ObjectiveProline–glycine–proline (PGP) has been shown to have chemotactic effects on neutrophils via CXCR2 in several lung diseases. PGP is derived from collagen by the combined action of matrix metalloproteinase (MMP) 8 and/or MMP9 and prolyl endopeptidase (PE). We investigated the role of PGP in inflammatory bowel disease (IBD).DesignIn intestinal tissue from patients with IBD and mice with dextran sodium sulfate (DSS)-induced colitis, MMP8, MMP9 and PE were evaluated by ELISA, immunoblot and immunohistochemistry. Peripheral blood polymorphonuclear cell (PMN) supernatants were also analysed accordingly and incubated with collagen to assess PGP generation ex vivo. PGP levels were measured by mass spectrometry, and PGP neutralisation was achieved with a PGP antagonist and PGP antibodies.ResultsIn the intestine of patients with IBD, MMP8 and MMP9 levels were elevated, while PE was expressed at similar levels to control tissue. PGP levels were increased in intestinal tissue of patients with IBD. Similar results were obtained in intestine from DSS-treated mice. PMN supernatants from patients with IBD were far more capable of generating PGP from collagen ex vivo than healthy controls. Furthermore, PGP neutralisation during DSS-induced colitis led to a significant reduction in neutrophil infiltration in the intestine.ConclusionsThe proteolytic cascade that generates PGP from collagen, as well as the tripeptide itself, is present in the intestine of patients with IBD and mice with DSS-induced colitis. PGP neutralisation in DSS-treated mice showed the importance of PGP-guided neutrophilic infiltration in the intestine and indicates a vicious circle in neutrophilic inflammation in IBD.
BackgroundHuman milk is uniquely suited to provide optimal nutrition and immune protection to infants. Human milk oligosaccharides are structural complex and diverse consisting of short chain and long chain oligosaccharides typically present in a 9:1 ratio. 2′-Fucosyllactose (2′FL) is one of the most prominent short chain oligosaccharides and is associated with anti-infective capacity of human milk.AimTo determine the effect of 2′FL on vaccination responsiveness (both innate and adaptive) in a murine influenza vaccination model and elucidate mechanisms involved.MethodsA dose range of 0.25–5% (w/w) dietary 2′FL was provided to 6-week-old female C57Bl/6JOlaHsd mice 2 weeks prior primary and booster vaccination until the end of the experiment. Intradermal (i.d.) challenge was performed to measure the vaccine-specific delayed-type hypersensitivity (DTH). Antigen-specific antibody levels in serum as well as immune cell populations within several organs were evaluated using ELISA and flow cytometry, respectively. In an ex vivo restimulation assay, spleen cells were cocultured with influenza-loaded bone marrow-derived dendritic cells (BMDCs) to study the effects of 2′FL on vaccine-specific CD4+ and CD8+ T-cell proliferation and cytokine secretions. Furthermore, the direct immune regulatory effects of 2′FL were confirmed using in vitro BMDCs T-cell cocultures.ResultsDietary 2′FL significantly (p < 0.05) enhanced vaccine specific DTH responses accompanied by increased serum levels of vaccine-specific immunoglobulin (Ig) G1 and IgG2a in a dose-dependent manner. Consistently, increased activation marker (CD27) expression on splenic B-cells was detected in mice receiving 2′FL as compared to control mice. Moreover, proliferation of vaccine-specific CD4+ and CD8+ T-cells, as well as interferon-γ production after ex vivo restimulation were significantly increased in spleen cells of mice receiving 2′FL as compared to control mice, which were in line with changes detected within dendritic cell populations. Finally, we confirmed a direct effect of 2′FL on the maturation status and antigen presenting capacity of BMDCs.ConclusionDietary intervention with 2′FL improves both humoral and cellular immune responses to vaccination in mice, which might be attributed in part to the direct effects of 2′FL on immune cell differentiation.
Human milk oligosaccharides (HMOS) are a complex mixture of bioactive components supporting the immune development of breastfed‐infants. Dendritic cells (DCs) play a central role in the regulation of immune responses, being specialized in antigen presentation and driving T‐cell priming as well as differentiation. However, little is known about the direct effects of HMOS on human DC phenotypes and functions. Here, we report that HMOS mixture isolated from pooled human milk, induced semi‐maturation of human monocytes‐derived DCs (moDCs), and elevated levels of IL‐10, IL‐27 and IL‐6 but not IL‐12p70 and TNF‐α. Consistently, HMOS‐conditioned human moDCs promoted Treg generation from naïve CD4+ T cells. Interestingly, HMOS limited LPS‐induced maturation of human moDCs, while maintained IL‐10 and IL‐27 secretion and reduced LPS‐induced production of IL‐12p70, IL‐6 and TNF‐α. Furthermore, HMOS+LPS‐stimulated DCs induced a higher frequency of Tregs and increased IL‐10 production, while a reduction in Tbet+Th1 frequency and IFN‐γ production was detected as compared to LPS‐DCs. The regulatory effects of HMOS seemed to be mediated by interactions of HMOS with receptors, including but not limited to TLR4 and DC‐SIGN on human moDCs. In conclusion, HMOS contain tolerogenic factors influencing human moDCs and thereby modulating the development of the neonatal immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.