The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome1,2. Little is known about the Y chromosome’s recent evolution because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis3,4. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes5-8, but they have not been tested in older, highly evolved Y chromosomes like that of humans. We therefore finished sequencing the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. We then compared the MSYs of the two species and found that they differ radically in sequence structure and gene content, implying rapid evolution during the past 6 million years. The chimpanzee MSY harbors twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the MSY’s prominent role in sperm production, genetic hitchhiking effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behavior. While genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the ongoing evolution of chimpanzee, human, and perhaps other older MSYs.
Many human Y-chromosomal deletions are thought to severely impair reproductive fitness, which precludes their transmission to the next generation and thus ensures their rarity in the population. Here we report a 1.6-Mb deletion that persists over generations and is sufficiently common to be considered a polymorphism. We hypothesized that this deletion might affect spermatogenesis because it removes almost half of the Y chromosome's AZFc region, a gene-rich segment that is critical for sperm production. An association study established that this deletion, called gr/gr, is a significant risk factor for spermatogenic failure. The gr/gr deletion has far lower penetrance with respect to spermatogenic failure than previously characterized Y-chromosomal deletions; it is often transmitted from father to son. By studying the distribution of gr/gr-deleted chromosomes across the branches of the Y chromosome's genealogical tree, we determined that this deletion arose independently at least 14 times in human history. We suggest that the existence of this deletion as a polymorphism reflects a balance between haploid selection, which culls gr/gr-deleted Y chromosomes from the population, and homologous recombination, which continues to generate new gr/gr deletions.
Context Young boys treated with high-dose chemotherapy are often confronted with infertility once they reach adulthood. Cryopreserving testicular tissue before chemotherapy and autotransplantation of spermatogonial stem cells at a later stage could theoretically allow for restoration of fertility. Objective To establish in vitro propagation of human spermatogonial stem cells from small testicular biopsies to obtain an adequate number of cells for successful transplantation. Design, Setting, and Participants Study performed from April 2007 to July 2009 using testis material donated by 6 adult men who underwent orchidectomy as part of prostate cancer treatment. Testicular cells were isolated and cultured in supplemented StemPro medium; germline stem cell clusters that arose were subcultured on human placental laminin-coated dishes in the same medium. Presence of spermatogonia was determined by reverse transcriptase polymerase chain reaction and immunofluorescence for spermatogonial markers. To test for the presence of functional spermatogonial stem cells in culture, xenotransplantation to testes of immunodeficient mice was performed, and migrated human spermatogonial stem cells after transplantation were detected by COT-1 fluorescence in situ hybridization. The number of colonized spermatogonial stem cells transplanted at early and later points during culture were counted to determine propagation. Main Outcome Measures Propagation of spermatogonial stem cells over time. Results Testicular cells could be cultured and propagated up to 15 weeks. Germline stem cell clusters arose in the testicular cell cultures from all 6 men and could be subcultured and propagated up to 28 weeks. Expression of spermatogonial markers on both the RNA and protein level was maintained throughout the entire culture period. In 4 of 6 men, xenotransplantation to mice demonstrated the presence of functional spermatogonial stem cells, even after prolonged in vitro culture. Spermatogonial stem cell numbers increased 53-fold within 19 days in the testicular cell culture and increased 18 450-fold within 64 days in the germline stem cell subculture. Conclusion Long-term culture and propagation of human spermatogonial stem cells in vitro is achievable.
Summary Massive palindromes in the human Y chromosome harbor mirror-image gene pairs essential for spermatogenesis. During evolution, these gene pairs have been maintained by intrapalindrome, arm-to-arm recombination. The mechanism of intrapalindrome recombination and risk of harmful effects are unknown. We report 51 patients with isodicentric Y (idicY) chromosomes formed by homologous crossing-over between opposing arms of palindromes on sister chromatids. These ectopic recombination events occur at nearly all Y-linked palindromes. Based on our findings, we propose that intrapalindrome sequence identity is maintained via noncrossover pathways of homologous recombination. DNA double-strand breaks that initiate these pathways can be alternatively resolved by crossing over between sister chromatids to form idicY chromosomes, with clinical consequences ranging from spermatogenic failure to sex reversal and Turner syndrome. Our observations imply that crossover as well as noncrossover pathways are active in nearly all Y-linked palindromes, exposing an Achilles' heel in the mechanism that preserves palindrome-borne genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.