Toxicants and other, non-chemical environmental stressors contribute to the global biodiversity crisis. Examples include the loss of bees and the reduction of aquatic biodiversity. Although non-compliance with regulations might be contributing, the widespread existence of these impacts suggests that for example the current approach of pesticide risk assessment fails to protect biodiversity when multiple stressors concurrently affect organisms. To quantify such multiple stress effects, we analysed all applicable aquatic studies and found that the presence of environmental stressors increases individual sensitivity to toxicants (pesticides, trace metals) by a factor of up to 100. To predict this dependence, we developed the “Stress Addition Model” (SAM). With the SAM, we assume that each individual has a general stress capacity towards all types of specific stress that should not be exhausted. Experimental stress levels are transferred into general stress levels of the SAM using the stress-related mortality as a common link. These general stress levels of independent stressors are additive, with the sum determining the total stress exerted on a population. With this approach, we provide a tool that quantitatively predicts the highly synergistic direct effects of independent stressor combinations.
Xenobiotics alter the balance of competition between species and induce shifts in community composition. However, little is known about how these alterations affect the recovery of sensitive taxa. We exposed zooplankton communities to esfenvalerate (0.03, 0.3, and 3 μg/L) in outdoor microcosms and investigated the long-term effects on populations of Daphnia spp. To cover a broad and realistic range of environmental conditions, we established 96 microcosms with different treatments of shading and periodic harvesting. Populations of Daphnia spp. decreased in abundance for more than 8 weeks after contamination at 0.3 and 3 μg/L esfenvalerate. The period required for recovery at 0.3 and 3 μg/L was more than eight and three times longer, respectively, than the recovery period that was predicted on the basis of the life cycle of Daphnia spp. without considering the environmental context. We found that the recovery of sensitive Daphnia spp. populations depended on the initial pesticide survival and the related increase of less sensitive, competing taxa. We assert that this increase in the abundance of competing species, as well as sub-lethal effects of esfenvalerate, caused the unexpectedly prolonged effects of esfenvalerate on populations of Daphnia spp. We conclude that assessing biotic interactions is essential to understand and hence predict the effects and recovery from toxicant stress in communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.