It has long been hypothesized that trees growing at range limits likely also occur near the limit of their ecological amplitude and thus, should be more sensitive to climate variability than individuals growing nearer the range core. We developed a tree-ring chronology using Tsuga canadensis individuals from three disjunct stands at the species' southern limit to quantify the influence of climate and disturbance on radial growth patterns. The tree-ring record extended 158 years from 1850 to 2007. Significant negative relationships were found between the STANDARD chronology and monthly mean temperature, monthly maximum temperature, and monthly minimum temperature during the previous and current summer, while significant positive relationships were documented between the STANDARD chronology and monthly minimum temperature for September and October of the current year. Also, significant positive relationships were documented between the STANDARD chronology and monthly total precipitation for September of the previous year and May of the current year. Response function analysis showed that monthly climate variables (r 2 = 0.22) and prior growth (r 2 = 0.40) explained 62% of the variance in the T. canadensis tree-ring chronology. A time series plot for the T. canadensis chronology showed that actual tree growth agreed relatively well with the predicted growth based on significant climate variables. However, positive departures from the predicted growth were noted. Dendroecological analysis revealed these departures were likely related to disturbance events. Our results indicated that T. canadensis individuals at its southernmost extent are sensitive to regional climate, but not more so than trees nearer the range core. We hypothesize that microenvironmental conditions of T. canadensis stands at its southern limit are similar to conditions within the contiguous distribution of the species, which may explain this pattern.
Red spruce−Fraser fir forests are geographically limited to high elevations in the Appalachian Mountains (USA) and are considered to be endangered in the USA. We investigated the successional status and radial growth patterns in the heavily disturbed red spruce Picea rubens Sarg. and Fraser fir Abies fraseri (Pursh) Poir. forest of Roan Mountain, Tennessee and North Carolina. This study elucidates the complexity of second-growth red spruce development after logging and disturbances by balsam woolly adelgid Adelges piceae Ratz. We documented precise temporal information of stand age, disturbance regimes, recruitment patterns, and the successional trajectory of the spruce−fir forest community. We used radial growth patterns of red spruce samples to detect the frequency and magnitude of disturbance. Red spruce was the oldest dominant canopy species, although Fraser fir had high recruitment rates over the past 80 yr. Changes in forest structure and species richness coincided with stand-wide disturbance events such as balsam woolly adelgid infestation and widespread early twentieth-century logging. The competitive advantage of Fraser fir over red spruce has resulted in an even-aged Fraser fir-dominant forest that occupies a relatively early stage of successional development. This study provides a 130 yr environmental history to assist land managers in the southern Appalachian Mountains as they develop long-term restoration plans for this unique ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.