Facioscapulohumeral muscular dystrophy (FSHD) is an inherited and progressive muscle disorder. Although its name suggests otherwise, it comprises weakness of the facial, shoulder and upper arm muscles, and also of the trunk and leg muscles. Its severity and disease course vary greatly and mild or early FSHD can be difficult to recognise. Knowledge of its subtle signs and symptoms can lead directly to the correct diagnosis without diagnostic delay and without needing multiple diagnostic procedures. We give an overview of the signs and symptoms of FSHD in severe as well as in mild cases, to facilitate correct and instant recognition of this relatively common muscle disorder.
Objective: To investigate whether sarcomeric dysfunction contributes to muscle weakness in facioscapulohumeral muscular dystrophy (FSHD).Methods: Sarcomeric function was evaluated by contractile studies on demembranated single muscle fibers obtained from quadriceps muscle biopsies of 4 patients with FSHD and 4 healthy controls. The sarcomere length dependency of force was determined together with measurements of thin filament length using immunofluorescence confocal scanning laser microscopy. X-ray diffraction techniques were used to study myofilament lattice spacing.Results: FSHD muscle fibers produced only 70% of active force compared to healthy controls, a reduction which was exclusive to type II muscle fibers. Changes in force were not due to changes in thin filament length or sarcomere length. Passive force was increased 5-to 12-fold in both fiber types, with increased calcium sensitivity of force generation and decreased myofilament lattice spacing, indicating compensation by the sarcomeric protein titin. Conclusions:We have demonstrated a reduction in sarcomeric force in type II FSHD muscle fibers, and suggest compensatory mechanisms through titin stiffening. Based on these findings, we propose that sarcomeric dysfunction plays a critical role in the development of muscle weakness in FSHD. Although muscle weakness is the hallmark feature of facioscapulohumeral muscular dystrophy (FSHD), the molecular mechanisms underlying weakness remain largely unknown. Before treatment options can be pursued, more insight into the pathophysiologic mechanisms of muscle weakness in FSHD is needed.To understand why FSHD muscles are weak, we can take a clue from the genetics of the disease. FSHD1, the most common type of FSHD, is caused by a contraction of D4Z4, a 3.3-kb macrosatellite repeat located on chromosome 4q35. This contraction changes chromatin configuration, which is hypothesized to permit transcription of otherwise epigenetically silenced genes. 1Of the candidate genes currently under investigation, some are muscle-specific and encode proteins involved in musculogenesis and the development of the sarcomere-the smallest contractile unit in muscle. Gene expression profiling studies in FSHD muscle biopsies have shown dysregulation of several sarcomeric proteins.2 Overexpression of DUX4, the leading FSHD candidate gene, has been shown to activate pathways involved in sarcomeric protein degradation. Despite evidence pointing toward changes on the level of the sarcomere, no studies have examined whether sarcomeric dysfunction contributes to muscle weakness in FSHD. This study is the first to report on sarcomeric function in FSHD.
The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6–83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.
Background: Muscle MRI is increasingly used as a diagnostic and research tool in muscle disorders. However, the correlation between MRI abnormalities and histopathological severity is largely unknown. Objective: To investigate correlations between muscle MRI abnormalities and histopathological severity in healthy controls and patients with muscle disease. Methods: We performed quantitative MRI and histopathological analysis in 35 patients with inclusion body myositis, facioscapulohumeral muscular dystrophy or oculopharyngeal muscular dystrophy and 12 healthy controls. Participants contributed needle biopsies of the vastus lateralis and/or tibialis anterior, yielding 77 muscle biopsies with matched T1, T2 and TIRM MRI imaging. Muscle biopsies were evaluated with a semi-quantitative histopathology severity grading scale (range 0–12) and an inflammation severity grading scale (range 0–3). Results: In muscle disease, histopathology sum scores ranged from 0 to 11 and correlated significantly with fat percentage as measured on MRI (Spearman’s rho = 0.594, p < 0.001). Muscle edema on muscle MRI was associated with increased amounts of inflammation (p < 0.001). Mild abnormalities occured in 95% of control biopsies and were more pronounced in tibialis anterior (median sum score of 1±1 in vastus lateralis and 2±1 in tibialis anterior (p = 0.048)). Conclusion: In muscle disease, fatty infiltration on MRI correlates moderately with muscle histopathology. Histopathological abnormalities can occur prior to the onset of fatty infiltration. In middle-aged controls, almost all biopsies showed some histopathological abnormalities. The findings from this study may facilitate the choice for appropriate imaging sequences as outcome measures in therapeutic trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.