Many cases of AML are associated with mutational activation of receptor tyrosine kinases (RTKs) such as FLT3. However, RTK inhibitors have limited clinical efficacy as single agents, indicating that AML is driven by concomitant activation of different signaling molecules. We used a functional genomic approach to identify RET, encoding an RTK, as an essential gene in multiple subtypes of AML, and observed that AML cells show activation of RET signaling via ARTN/GFRA3 and NRTN/GFRA2 ligand/co-receptor complexes. Interrogation of downstream pathways identified mTORC1-mediated suppression of autophagy and subsequent stabilization of leukemogenic drivers such as mutant FLT3 as important RET effectors. Accordingly, genetic or pharmacologic RET inhibition impaired the growth of FLT3-dependent AML cell lines and was accompanied by upregulation of autophagy and FLT3 depletion. RET dependence was also evident in mouse models of AML and primary AML patient samples, and transcriptome and immunohistochemistry analyses identified elevated RET mRNA levels and co-expression of RET and FLT3 proteins in a substantial proportion of AML patients. Our results indicate that RET-mTORC1 signaling promotes AML through autophagy suppression, suggesting that targeting RET or, more broadly, depletion of leukemogenic drivers via autophagy induction provides a therapeutic opportunity in a relevant subset of AML patients.
The protection of telomeres 1 protein (POT1) is a critical component of the shelterin complex, a multiple-protein machine that regulates telomere length and protects telomere ends. Germline variants in POT1 have been linked to familial melanoma, and somatic mutations are associated with a range of cancers including cutaneous T-cell lymphoma (CTCL). OBJECTIVE To characterize pathogenic variation in POT1 in families with melanoma to inform clinical management. DESIGN, SETTING, AND PARTICIPANTS In this case study and pedigree evaluation, analysis of the pedigree of 1 patient with melanoma revealed a novel germline POT1 variant (p.I78T, c.233T>C, chromosome 7, g.124870933A>G, GRCh38) that was subsequently found in 2 other pedigrees obtained from the GenoMEL Consortium. MAIN OUTCOMES AND MEASURES (1) Identification of the POT1 p.I78T variant; (2) evaluation of the clinical features and characteristics of patients with this variant; (3) analysis of 3 pedigrees; (4) genomewide single-nucleotide polymorphism genotyping of germline DNA; and (5) a somatic genetic analysis of available nevi and 1 melanoma lesion. RESULTS The POT1 p.I78T variant was found in 3 melanoma pedigrees, all of persons who self-reported as being of Jewish descent, and was shown to disrupt POT1-telomere binding. A UV mutation signature was associated with nevus and melanoma formation in POT1 variant carriers, and somatic mutations in driver genes such as BRAF, NRAS, and KIT were associated with lesion development in these patients. CONCLUSIONS AND RELEVANCE POT1 p.I78T is a newly identified, likely pathogenic, variant meriting screening for in families with melanoma after more common predisposition genes such as CDKN2A have been excluded. It could also be included as part of gene panel testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.