Articles you may be interested inAccurate determination of optical bandgap and lattice parameters of Zn1-x Mg x O epitaxial films ( 0 ≤ x ≤ 0.3 ) grown by plasma-assisted molecular beam epitaxy on a-plane sapphire A hydrogen storage layer on the surface of silicon nitride films Low temperature (250-350 C) hydrogen plasma annealing (HPA) treatments have been performed on amorphous hydrogenated silicon nitride (a-SiN x :H) thin films having a range of compositions and subsequent modification of photoluminescence (PL) is investigated. The PL spectral shape and peak positions for the as deposited films could be tuned with composition and excitation energies. HPA induced modification of PL of these films is found to depend on the N/Si ratio (x). Upon HPA, the PL spectra show an emergence of a red emission band for x 1, whereas an overall increase of intensity without change in the spectral shape is observed for x > 1. The emission observed in the Si rich films is attributed to nanoscale a-Si:H inclusions. The enhancement is maximum for off-stoichiometric films (x $ 1) and decreases as the compositions of a-Si (x ¼ 0) and a-Si 3 N 4 (x ¼ 1.33) are approached, implying high density of non-radiative defects around x ¼ 1. The diffusion of hydrogen in these films is also analyzed by Elastic Recoil Detection Analysis technique. V C 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4864255]
053525-2Bommali et al.
We have studied the effect of rapid thermal annealing (RTA) in the context of phase evolution and stabilization in hydrogenated amorphous silicon nitride (a-SiN(x):H) thin films having different stoichiometries, deposited by an Hg-sensitized photo-CVD (chemical vapor deposition) technique. RTA-treated films showed substantial densification and increase in refractive index. Our studies indicate that a mere increase in flow of silicon (Si)-containing gas would not result in silicon-rich a-SiN(x):H films. We found that out-diffusion of hydrogen, upon RTA treatment, plays a vital role in the overall structural evolution of the host matrix. It is speculated that less incorporation of hydrogen in as-deposited films with moderate Si content helps in the stabilization of the silicon nitride (Si(3)N(4)) phase and may also enable unreacted Si atoms to cluster after RTA. These studies are of great interest in silicon photonics where the post-treatment of silicon-rich devices is essential.
The present study deals with static modeling and analysis of a novel electro-pneumatic braided muscle (EPBM) actuator. The EPBM actuator is a hybrid McKibben-type actuator, made of a dielectric polymeric bladder enclosed in a braided mesh sleeve. A continuum mechanics-based electromechanical model is developed to predict the response of the actuator for a combined pressure and voltage loading. The model also incorporates braid-to-braid frictional effects. The model agrees well with existing experimental results for the special case of zero input voltage. Parametric studies are subsequently performed for varying braid angle, input pressure, and voltage. Finally, the model is utilized to study the impact of fiber-reinforcement in the bladder on the actuator performance.
BaTiO3 thin film has been deposited on Si(100) substrate using sol-gel process and deposited by using spin – coating technique. The BaTiO3/Si(100) structures were studied by structural and electrical characteristics. The X-ray diffrac-tion of BaTiO3/Si(100) shows that the diffraction peaks become increasing sharp with increasing calcination tempera-tures indicating the enhance crystallinity of the films. Scanning electron microscopy of BaTiO3 thin films shows the crack free and uniform nature. The capacitance-voltage measurement of BaTiO3 thin film deposited on Si(100) an-nealed at 600℃ shows large frequency dispersion in the accumulation region. The current-voltage measurement of BaTiO3/Si shows the ideality factor was approaches to unity at 600℃
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.