Protein misfolding and amyloid formation are associated with various human diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Type-2 Diabetes mellitus (T2DM). No disease-modifying therapeutics are available for them. Despite the lack of sequence homology between the corresponding proteins, aromatic residues are recognized as common key motifs in the formation and stabilization of amyloid structures via π−π stacking. Thus, targeting aromatic recognition interfaces could be a useful approach for inhibiting amyloid formation as well as disrupting the preformed amyloid fibrils. Combining experimental and computational approaches, we demonstrated the anti-amyloidogenic effect of naphthoquinone-tryptophan-based hybrid molecules toward PHF6 (τ-derived aggregative peptide), Amyloid β (Aβ42), and human islet amyloid polypeptide (hIAPP) implicated in AD and T2DM, respectively. These hybrid molecules significantly inhibited the aggregation and disrupted their preformed fibrillar aggregates in vitro, in a dose-dependent manner as evident from Thioflavin T/S binding assay, CD spectroscopy, and electron microscopy. Dye leakage assay from LUVs and cell-based experiments indicated that the hybrid molecules inhibit membrane disruption and cytotoxicity induced by these amyloids. Furthermore, in silico studies provided probable mechanistic insights into the interaction of these molecules with the amyloidogenic proteins in their monomeric or aggregated forms, including the role of hydrophobic interaction, hydrogen bond formation, and packing during inhibition of aggregation and fibril disassembly. Our findings may help in designing novel therapeutics toward AD, T2DM, and other proteinopathies based on the naphthoquinone derived hybrid molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.