Background: PTEN is targeted by multiple E3 ligases but that does not clearly decipher the rigid control of its level and activity. Results: CHIP interacts with PTEN and promotes its proteasomal degradation. Conclusion: CHIP acts as a bridge between the chaperone system and the degradation machinery for PTEN. Significance: Stabilization of PTEN by targeting CHIP can be a novel therapeutic approach in cancer regulation.
c-Myc is a proto-oncogenic transcription factor and its rapid turnover mediated by the ubiquitin-proteasome system is critical for maintaining normal cellular homeostasis. Multiple ubiquitin ligases have been assigned for c-Myc regulation till date. However, the available data suggest for the possible existence of additional E3 ligase(s). Here, we report a new E3 ligase for c-Myc, the carboxyl terminus of Hsc70-interacting protein or CHIP, which is a chaperone-associated Ubox-containing E3 ligase. In this report, we show that CHIP interacts and ubiquitinates c-Myc, thus targeting it for proteasome-mediated degradation. Overexpression of CHIP could accelerate the turnover rate of c-Myc protein. Conversely, knockdown of CHIP by RNAi stabilizes endogenous c-Myc. The interaction between CHIP and c-Myc depends on the N-terminally located tetratricopeptide repeats of CHIP, which has been implicated as a chaperone-binding motif. Inhibition of Hsp90 chaperone activity by 17-N-allylamino-17-demethoxygeldanamycin reduces c-Myc protein level. We found that the association between CHIP and c-Myc is dependent on the chaperones; particularly Hsp70. CHIP antagonizes the transcriptional activity of c-Myc and decreases the abundance of the transcripts of its target genes. Overall, CHIP-knockdown increases malignant behavior of C6 glioma cells. To the best of our knowledge, this is the first report of c-Myc being regulated by a bona-fide chaperone-associated E3 ligase in HEK293 as well as glioma cells. Because CHIP has been reported earlier to be negatively regulating Akt1, BCR-ABL and hTERT, and now c-Myc, the present study may strengthen the view that CHIP acts as a tumor suppressor.
Strain ST-14, characterized as a member of the genus Cupriavidus, was capable of utilizing 2-and 4-nitrobenzoates individually as sole sources of carbon and energy. Biochemical studies revealed the assimilation of 2-and 4-nitrobenzoates via 3-hydroxyanthranilate and protocatechuate, respectively. Screening of a genomic fosmid library of strain ST-14 constructed in Escherichia coli identified two gene clusters, onb and pob-pca, to be responsible for the complete degradation of 2-nitrobenzoate and protocatechuate, respectively. Additionally, a gene segment (pnb) harboring the genes for the conversion of 4-nitrobenzoate to protocatechuate was unveiled by transposome mutagenesis. Reverse transcription-PCR analysis showed the polycistronic nature of the gene clusters, and their importance in the degradation of 2-and 4-nitrobenzoates was ascertained by gene knockout analysis. Cloning and expression of the relevant pathway genes revealed the transformation of 2-nitrobenzoate to 3-hydroxyanthranilate and of 4-nitrobenzoate to protocatechuate. Finally, incorporation of functional 3-nitrobenzoate dioxygenase into strain ST-14 allowed the recombinant strain to utilize 3-nitrobenzoate via the existing protocatechuate metabolic pathway, thereby allowing the degradation of all three isomers of mononitrobenzoate by a single bacterial strain. IMPORTANCEMononitrobenzoates are toxic chemicals largely used for the production of various value-added products and enter the ecosystem through industrial wastes. Bacteria capable of degrading mononitrobenzoates are relatively limited. Unlike other contaminants, these man-made chemicals have entered the environment since the last century, and it is believed that bacteria in nature evolved not quite efficiently to assimilate these compounds; as a consequence, to date, there are only a few reports on the bacterial degradation of one or more isomers of mononitrobenzoate. In the present study, fortunately, we have been able to isolate a Cupriavidus sp. strain capable of assimilating both 2-and 4-nitrobenzoates as the sole carbon source. Results of the biochemical and molecular characterization of catabolic genes responsible for the degradation of mononitrobenzoates led us to manipulate a single enzymatic step, allowing the recombinant host organism to expand its catabolic potential to assimilate 3-nitrobenzoate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.