Cancer stem cells (CSCs) drive aggressiveness and metastasis by utilizing stem cell-related signals. In this study, 5-O-(N-Boc-l-alanine)-renieramycin T (OBA-RT) was demonstrated to suppress CSC signals and induce apoptosis. OBA-RT exerted cytotoxic effects with a half-maximal inhibitory concentration of approximately 7 µM and mediated apoptosis as detected by annexin V/propidium iodide using flow cytometry and nuclear staining assays. Mechanistically, OBA-RT exerted dual roles, activating p53-dependent apoptosis and concomitantly suppressing CSC signals. A p53-dependent pathway was indicated by the induction of p53 and the depletion of anti-apoptotic Myeloid leukemia 1 (Mcl-1) and B-cell lymphoma 2 (Bcl-2) proteins. Cleaved poly (ADP-ribose) polymerase (Cleaved-PARP) was detected in OBA-RT-treated cells. Interestingly, OBA-RT exerted strong CSC-suppressing activity, reducing the ability to form tumor spheroids. In addition, OBA-RT could induce apoptosis in CSC-rich populations and tumor spheroid collapse. CSC markers, including prominin-1 (CD133), Octamer-binding transcription factor 4 (Oct4), and Nanog Homeobox (Nanog), were notably decreased after OBA-RT treatment. Upstream CSCs regulating active Akt and c-Myc were significantly decreased; indicating that Akt may be a potential target of action. Computational molecular modeling revealed a high-affinity interaction between OBA-RT and an Akt molecule. This study has revealed a novel CSC inhibitory effect of OBA-RT via Akt inhibition, which may improve cancer therapy.
The Akt-mTOR signal is important for the survival and proliferation of cancer cells and has become an interesting drug target. In this study, five resveratrol derivatives were evaluated for anticancer activity and Akt/mTOR targeting activity in non-small lung cancer cell lines. The effects of resveratrol derivatives on cell proliferation were assessed by 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, nucleus staining, and colony formation assay. Furthermore, the effect of resveratrol derivatives on proliferation-related protein expression was analyzed by immunofluorescence and Western blotting. For the structure–activity relationship (SAR), results reveal that two derivatives of resveratrol which are 4,4′-(ethane-1,2-diyl) bis(2-methoxyphenol) (RD2) and the 4-(3-hydroxy-4-methoxyphenethyl)-2-methoxyphenol (RD3) had very similar structures but exerted different cytotoxicity. The IC50 of RD2 and RD3 were 108.6 ± 10.82 and more than 200 µM in the A549 cell line and 103.5 ± 6.08 and more than 200 µM in H23 cells, respectively. RD2 inhibited cell proliferation and induced apoptosis when compared with the control, while RD3 caused minimal effects. Cells treated with RD2 exhibited apoptotic nuclei in a concomitant with the reduction of cellular p-Akt and p-mTOR. RD3 had minimal effects on such proteins. According to these results, molecular docking analysis revealed a high-affinity interaction between RD2 and an Akt molecule at the ATP-binding and the allosteric sites, indicating this RD2 as a potential Akt inhibitor. This study provides useful information of resveratrol derivatives RD2 for treating lung cancer via Akt/mTOR inhibition.
Background Akt and mTOR are aberrantly activated in cancers and targeting these proteins are interesting for cancer drug discovery. Napabucasin (NB), a phytochemical compound, has been reported as potential anti-cancer agent, however, Akt and mTOR targeting mechanisms remain unclear. Method Apoptosis induction was investigated by Hoechst 33342/PI double staining and annexin V/PI staining with flowcytometry. Autophagy was evaluated by monodansylcadaverine staining and Western blot analysis. Binding affinity of NB and essential signaling proteins (PI3K, Akt, and mTOR) was investigated using molecular docking and confirmed by Western blot analysis. Result A structure modification from changing methyl moiety of acetyl group of NB to hydroxyl moiety of carboxyl group of NB derivative (napabucasin-acid or NB-acid) greatly affected the compound activities. NB showed more potent anti-cancer activity. NB reduced cell viability with an approximately 20 times lower IC50 and inhibited the colony formation capacity much more than NB-acid treated cells. NB induced cell apoptosis, which was accompanied by decrease Bcl‑2 and Mcl-1 and clevage of PARP, while NB-acid show lesser effect on Mcl-1. NB was found to strongly induce autophagy indicated by acidic vesicle staining and the LC3B conversion. Interestingly, computational molecular docking analysis further demonstrated that NB directly bound to Akt and mTOR (complex 1 and 2) proteins at their critical sites indicating that NB targets the upstream regulators of apoptosis and autophagy. The docking results were confirmed by decrease of p-Akt/Akt, p-mTOR/mTOR, and c-Myc a downstream target of Akt protein levels. Conclusion Results show for the first time that NB exerts an anti-cancer activity through the direct interaction to Akt and mTOR proteins. The methyl moiety of acetyl group of NB is required for its potent anti-cancer activities. These data encourage further development of NB compounds for Akt and mTOR driven cancers.
Akt is a key regulatory protein of cancer stem cells (CSCs) and is responsible for cancer aggressiveness and metastasis. Targeting Akt is beneficial for the development of cancer drugs. renieramycin T (RT) has been reported to have Mcl-1 targeting activity, and the study of the structure-activity relationships (SARs) demonstrated that cyanide and the benzene ring are essential for its effects. In this study, novel derivatives of the RT right-half analog with cyanide and the modified ring were synthesized to further investigate the SARs for improving the anticancer effects of RT analogs and evaluate CSC-suppressing activity through Akt inhibition. Among the five derivatives, a compound with a substituted thiazole structure (DH_25) exerts the most potent anticancer activity in lung cancer cells. It has the ability to induce apoptosis, which is accompanied by an increase in PARP cleavage, a decrease in Bcl-2, and a diminishment of Mcl-1, suggesting that residual Mcl-1 inhibitory effects exist even after modifying the benzene ring to thiazole. Furthermore, DH_25 is found to induce CSC death, as well as a decrease in CSC marker CD133, CSC transcription factor Nanog, and CSC-related oncoprotein c-Myc. Notably, an upstream member of these proteins, Akt and p-Akt, are also downregulated, indicating that Akt can be a potential target of action. Computational molecular docking showing a high-affinity interaction between DH_25 and an Akt at the allosteric binding site supports that DH_25 can bind and inhibit Akt. This study has revealed a novel SAR and CSC inhibitory effect of DH_25 via Akt inhibition, which may encourage further development of RT compounds for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.