SUMMARY We studied the role of the target of rapamycin complex 2 (mTORC2) during neutrophil chemotaxis, a process that is mediated through the polarization of actin and myosin filament networks. We show that inhibition of mTORC2 activity, achieved via knock down (KD) of Rictor, severely inhibits neutrophil polarization and directed migration induced by chemoattractants, independently of Akt. Rictor KD also abolishes the ability of chemoattractants to induce cAMP production, a process mediated through the activation of the adenylyl cyclase 9 (AC9). Cells with either reduced or higher AC9 levels also exhibit specific and severe tail retraction defects that are mediated through RhoA. We further show that cAMP is excluded from extending pseudopods and remains restricted to the cell body of migrating neutrophils. We propose that the mTORC2-dependent regulation of MyoII occurs through a cAMP/RhoA signaling axis, independently of actin reorganization during neutrophil chemotaxis.
Atherosclerosis remains a major cause of death in the developed world despite the success of therapies that lower cholesterol and BP. The intermediate-conductance calcium-activated potassium channel KCa3.1 is expressed in multiple cell types implicated in atherogenesis, and pharmacological blockade of this channel inhibits VSMC and lymphocyte activation in rats and mice. We found that coronary vessels from patients with coronary artery disease expressed elevated levels of KCa3.1. In Apoe -/-mice, a genetic model of atherosclerosis, KCa3.1 expression was elevated in the VSMCs, macrophages, and T lymphocytes that infiltrated atherosclerotic lesions. Selective pharmacological blockade and gene silencing of KCa3.1 suppressed proliferation, migration, and oxidative stress of human VSMCs. Furthermore, VSMC proliferation and macrophage activation were reduced in KCa3.1 -/-mice. In vivo therapy with 2 KCa3.1 blockers, TRAM-34 and clotrimazole, significantly reduced the development of atherosclerosis in aortas of Apoe -/-mice by suppressing VSMC proliferation and migration into plaques, decreasing infiltration of plaques by macrophages and T lymphocytes, and reducing oxidative stress. Therapeutic concentrations of TRAM-34 in mice caused no discernible toxicity after repeated dosing and did not compromise the immune response to influenza virus. These data suggest that KCa3.1 blockers represent a promising therapeutic strategy for atherosclerosis.
This study examined mechanisms by which immune cells participate in the development of hypertension and renal disease in Dahl salt-sensitive (SS) rats. Increasing dietary salt from 0.4% to 4.0% NaCl significantly increased renal infiltration of T lymphocytes from 8.8 +/- 1.2 x 10(5) to 14.4 +/- 2.0 x 10(5) cells/2 kidneys, increased arterial blood pressure from 131 +/- 2 to 165 +/- 6 mmHg, increased albumin excretion rate from 17 +/- 3 to 129 +/- 20 mg/day, and resulted in renal glomerular and tubular damage. Furthermore, renal tissue ANG II was not suppressed in the kidneys of SS rats fed 4.0% NaCl. Administration of the immunosuppressive agent mycophenolate mofetil (MMF; 20 mg.kg(-1).day(-1)) prevented the infiltration of T lymphocytes and attenuated Dahl SS hypertension and renal disease. In contrast to vehicle-treated rats, Dahl SS rats administered MMF demonstrated a suppression of renal tissue ANG II from 163 +/- 26 to 88 +/- 9 pg/g of tissue when fed high salt. Finally, it was demonstrated that the T lymphocytes isolated from the kidney possess renin and angiotensin-converting enzyme activity. These data indicate that infiltrating T cells are capable of participating in the production of ANG II and are associated with increased intrarenal ANG II, hypertension, and renal disease. The suppression of T-cell infiltration decreased intrarenal ANG II and prevented Dahl SS hypertension and kidney damage. As such, infiltrating cells are capable of participating in the established phase of Dahl SS hypertension.
Abundant in milk and other dairy products, lactose is considered to have an important role in oral microbial ecology and can contribute to caries development in both adults and young children. To better understand the metabolism of lactose and galactose by Streptococcus mutans, the major etiological agent of human tooth decay, a genetic analysis of the tagatose-6-phosphate (lac) and Leloir (gal) pathways was performed in strain UA159. Deletion of each gene in the lac operon caused various alterations in expression of a P lacA -cat promoter fusion and defects in growth on either lactose (lacA, lacB, lacF, lacE, and lacG), galactose (lacA, lacB, lacD, and lacG) or both sugars (lacA, lacB, and lacG). Failure to grow in the presence of galactose or lactose by certain lac mutants appeared to arise from the accumulation of intermediates of galactose metabolism, particularly galatose-6-phosphate. The glucose-and lactose-PTS permeases, EII Man and EII Lac , respectively, were shown to be the only effective transporters of galactose in S. mutans. Furthermore, disruption of manL, encoding EIIAB Man , led to increased resistance to glucose-mediated CCR when lactose was used to induce the lac operon, but resulted in reduced lac gene expression in cells growing on galactose. Collectively, the results reveal a remarkably high degree of complexity in the regulation of lactose/galactose catabolism.Lactose, a 1,4-linked disaccharide of -D-galactose and ␣/-D-glucose, is commonly found in the dairy-rich diets of most industrialized nations. Lactose is rapidly fermented by streptococci, including the cariogenic oral bacterium Streptococcus mutans (21), as well as by a variety of industrially important lactic acid bacteria (LAB) (19). Multiple pathways have been identified in bacteria for the utilization of lactose encountered in the environment. For example, Streptococcus salivarius strain 25975 (26) secretes a -galactosidase that hydrolyzes extracellular lactose into galactose and glucose, although it is more common for lactose to be transported before cleavage (18). Most efficiently, and almost exclusively in Gram-positive bacteria, lactose is internalized by the phosphoenolpyruvate (PEP)-dependent sugar-phosphotransferase system (PTS), yielding lactose-6-phosphate (Lac-6-P) (36). The Lac-6-P is hydrolyzed to glucose and galactose-6-phosphate (Gal-6-P) by a cytoplasmic phospho--galactosidase (LacG), and the Gal-6-P can be catabolized by the tagatose-6-phosphate pathway (18) (Fig. 1). Many bacteria, including Escherichia coli, Lactococcus lactis strain 7962, and S. salivarius strain 57.I, can internalize lactose through non-PTS transporters. Intracellular lactose is cleaved by a -galactosidase enzyme and the D-galactose can directly enter the Leloir pathway ( Fig. 1) (18, 20).S. mutans has a functional lactose-specific PTS (14, 26) encoded by the lacF (EIIA) and lacE (EIIBC) genes (40). A phospho--galactosidase (lacG) and the enzymes of the tagatose-6-phosphate pathway (Fig. 1B), including the two subunits of the heteromeri...
RasC controls the spatial and temporal activity of TORC2 to regulate directional cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.