The aim of the present study is to evaluate the quantitative contribution of passive permeability to P-glycoprotein-mediated (P-gp-mediated) efflux and the functional activity of P-gp in determining intestinal absorption of drugs, and demonstrate the relationship between efflux parameters and intestinal permeability. MDRI-MDCKII cell monolayer permeability, human intestinal absorption (HIA), and solubility data were systematically collected from the literature. Drugs were classified as a total of 63 P-gp substrates (P-gpS) and 73 nonsubstrates (NS) on the basis of efflux ratio or calcein AM inhibition and ATPase activity assays. Efflux parameters, efflux ratio (ER) and absorption quotient (AQ), were correlated to the monolayer permeability. MDRI-MDCKII cell monolayer permeability characteristics were found to be distinctly different between P-gpS and NS datasets. The ER for P-gpS was found to increase with absorptive permeability until 20 nm.s(-1), but reduced for P-gpS with high absorptive permeability. The AQ showed a linear inverse relationship with absorptive permeability. Overall, efflux parameters, ER and AQ, indicated that the transport of P-gpS with moderate passive permeability is highly attenuated by P-gp, while passive permeability overrules the P-gp-mediated efflux for high-permeability molecules. Most of the P-gpS were found towards the upper limits of molecular weight (>500) and calculated total polar surface area (>75 A(2)). This dataset indicated that unfavorable chemical features of P-gpS limit passive permeability and thus are more susceptible to P-gp-mediated efflux. In conclusion, passive permeability versus P-gp-mediated efflux determines intestinal permeability of P-gpS, where P-gp limits absorption of only moderately permeable compounds. Thus, integrating these factors with drug characteristics of the Biopharmaceutics Classification System (BCS) class better predicts the functional role of P-gp in limiting intestinal drug absorption.
Pathogenesis of psoriasis involves the keratinocytes in epidermis as well as the angiogenesis involving deeper skin layers. So, the drug delivery strategy should be customized to localize paclitaxel (PCL) inside both layers. In this investigation, in order to achieve penetration of PCL into deeper skin layers while minimizing the systemic escape, a nanoemulsion (NE) was formulated and evaluated its in vivo pharmacokinetic performance. Further, the same formulation was explored for peroral bioavailability enhancement of PCL. Upon dermal application, the drug was predominantly localized in deeper skin layers, with minimal systemic escape. When orally administered as NE, PCL was rapidly absorbed reaching a steady-state value of 3.5 microg/ml in 30 minutes, and steady-state levels persisted up to 18 hours. This has amounted to an absolute bioavailability of 70.62%. Inhibition of P-glycoprotein efflux by D-alpha-tocopheryl polyethyleneglycol 1,000 succinate and labrasol would have contributed to the enhanced peroral bioavailability of PCL. This investigation provides direct evidence on the localization of large molecular weight, lipophilic drug, PCL, in dermis. Further, the NE formulation has enhanced the peroral bioavailability significantly to more than 70%. The developed NE formulation was safe and effective for both peroral and dermal delivery of PCL.
The tenets of biopharmaceutics, solubility and permeability, are of pivotal importance in new drug discovery and lead optimization due to the dependence of drug absorption and pharmacokinetics on these two properties. A classification system for drugs based on these two fundamental parameters, Biopharmaceutic Classification System (BCS), provides drug designer an opportunity to manipulate structure or physicochemical properties of lead candidates so as to achieve better "deliverability". Considering the facts for failure of NCEs, drug research, once concentrating on optimizing the efficacy and safety of the leads, dramatically transformed in the past two decades. With the enormous number of molecules being synthesized using combinatorial and parallel synthesis, high throughput methodologies for screening solubility and permeability has gained significant interest in pharmaceutical industry. Ultimate aim of the drug discovery scientist in pharmacokinetic optimization is to tailor the molecules so that they show the features of BCS class I without compromising on pharmacodynamics. Considerations to optimize drug delivery and pharmacokinetics right from the initial stages of drug design propelled need for "High Throughput Pharmaceutics" (HTP). In silico predictions and development of theoretical profiles for solubility and lipophilicity provides structure based biopharmaceutical optimization, while in vitro experimental models (microtitre plate assays and cell cultures) validate the predictions. Thus, biopharmaceutical characterization during drug design and early development helps in early withdrawal of molecules with insurmountable developmental problems associated with pharmacokinetic optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.