Platinum/carbon/titanium oxide ͑Pt/C-TiO 2 ͒ electrocatalysts were prepared by a heterogeneous photocatalysis method wherein the semiconductor optoelectronic properties of TiO 2 were exploited to facilitate photoreduction of a platinum precursor on the surface of the composite whole yielding excellent platinum dispersion. The TiO 2 loading in the electrocatalyst was varied in the ranges: 5-10 wt % and the Pt content was varied from 5 to 50 wt %. The physical and electrochemical characteristics of these new-generation electrocatalysts were benchmarked against commercial Pt/C samples. Membrane electrode assemblies were prepared using these composite electrocatalysts and tested with hydrogen as fuel and oxygen/air as oxidants. The fluoride emission rate ͑in units of mol/h cm 2 ͒ was estimated by condensate water analyses and found to be reduced by approximately an order of magnitude upon addition of TiO 2 . Implicatiońs of these data for optimization of polymer electrolyte fuel cells in terms of durability and performance are presented.
The objectives of this study are to estimate the contributions of kinetic, ohmic and mass transport overpotentials to the overall voltage loss in polymer electrolyte membrane fuel cell (PEMFC) electrodes and to relate these overpotentials to electrode binder properties such as ionic conductivity, ion exchange capacity (IEC) and O(2) permeability. The model electrode binders studied were perfluorosulfonic acid ionomers (PFSA; of IECs 1.35 meq g(-1) and 0.95 meq g(-1)), sulfonated poly ether ether ketone (SPEEK; of IECs 1.35, 1.75 and 2.1 meq g(-1)) and sulfonated poly sulfone (SPSU; of IEC 1.5 meq g(-1)). The O(2) permeability of these binders varied from 0.15 x 10(-12) mol cm(-1) s(-1) for SPSU to 6 x 10(-12) mol cm(-1) s(-1) for PFSA IEC 0.95 meq g(-1) at 80 degrees C and 75%RH. The electrodes prepared were characterized by cyclic voltammetry to estimate electrochemically active surface area (ECA) of platinum. Steady state polarization (V-I) experiments were performed with hydrogen as fuel and oxidants including O(2), 21% O(2)/N(2) (air), 21% O(2)/He (Helox) and 4% O(2)/N(2). The V-I data obtained was analyzed to determine the relative contributions of the different sources of polarization in the electrode. Electrodes prepared with PFSA binders had similar ECAs of 28 m(2) g(-1)-Pt, while those prepared using hydrocarbon binders had an ECA of 10 to 14 m(2) g(-1)-Pt at 80 degrees C and 75%RH. The same trend was seen in mass activity. At optimized binder loadings, a semi-quantitative relationship was obtained relating binder O(2) permeability to the mass transport losses within the electrode. Furthermore, a novel semi-quantitative method of plotting helox-air voltage gain against O(2)-air gain was employed to probe the O(2) transport limitations in the electrodes. Based on this analysis, it is suggested that the SPEEK and SPSU bound electrodes suffered from binder phase diffusion limitations in addition to gas phase diffusion limitation, while the PFSA bound electrodes predominantly exhibited gas-phase diffusion limitations.
The oxygen permeability of perfluorinated and hydrocarbon polymer electrolyte membranes (PEMs; Nafion®, SPEEK and SPSU), which are used as electrolytes and electrode ionomers in polymer electrolyte fuel cells (PEFCs), was estimated using chronoamperometry using a modified fuel cell set-up. A thin, cylindrical microelectrode was embedded into the PEM and used as the working electrode. The PEM was sandwiched between 2 gas diffusion electrodes, one of which was catalyzed and served as the counter and pseudo-reference electrode. Independently, from fuel cell experiments, the oxygen transport resistance arising due to transport through the ionomer film covering the catalyst active sites was estimated at the limiting current and decoupled from the overall mass transport resistance. The in situ oxygen permeability measured at 80 °C and 75% RH of perfluorinated ionomers such as Nafion® (3.85 × 10(12) mol cm(-1) s(-1)) was observed to be an order of magnitude higher than that of hydrocarbon-based PEMs such as SPEEK (0.27 × 10(12) mol cm(-1) s(-1)) and SPSU (0.15 × 10(12) mol cm(-1) s(-1)). The obtained oxygen transport (through ionomer film) resistance values (Nafion® - 1.6 s cm(-1), SPEEK - 2.2 s cm(-1) and SPSU - 3.0 s cm(-1); at 80 °C and 75% RH) correlated well with the measured oxygen permeabilities in these ion-containing polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.