<p>Sensors help robots perceive their environment and localize themselves. Determining a robot’s location requires a range of sensing systems. Depending on accuracy criteria and navigation conditions, robot localization sensors can differ. Common sensors for robot localization include encoders, GPS, cameras, LIDARs, and IMUs. Traditional sensors are not capable enough in changing environments and uneven terrain. In this paper, we propose a method based on deep learning to use the subsurface features obtained through a Ground Penetrating Radar (GPR) to estimate the odometry of a robot. This proposed method does not rely on visual features or the distance gathered from wheel encoders. The proposed approach was evaluated on a publicly available dataset, and the evaluation results show that the proposed method can be used for robot localization without the need for odometry from wheel encoders.</p>
<p>Sensors help robots perceive their environment and localize themselves. Determining a robot’s location requires a range of sensing systems. Depending on accuracy criteria and navigation conditions, robot localization sensors can differ. Common sensors for robot localization include encoders, GPS, cameras, LIDARs, and IMUs. Traditional sensors are not capable enough in changing environments and uneven terrain. In this paper, we propose a method based on deep learning to use the subsurface features obtained through a Ground Penetrating Radar (GPR) to estimate the odometry of a robot. This proposed method does not rely on visual features or the distance gathered from wheel encoders. The proposed approach was evaluated on a publicly available dataset, and the evaluation results show that the proposed method can be used for robot localization without the need for odometry from wheel encoders.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.