There has been increasing interest in using insects as sustainable protein sources for humans and animals. Therefore, this study aimed to explore the possibility of substituting poultry meal with house cricket (Acheta domesticus: AD) or mulberry silkworm (Bombyx mori: BM) pupae. Fifty healthy adult mixed-breed dogs were selected and divided into five experimental groups, which were fed, in amounts based on daily energy requirement, with a control diet, a diet with 10% AD, with 20% AD, with 7% BM, or with 14% BM. Days 0–22 and 23–28 of the experiment served as the adaptation and collection phases, respectively. Haematology and blood chemistry were collected at days 0, 14, and 28, and body weight, body condition score, feed intake, faecal output, faecal score, faecal moisture, and apparent total tract digestibility of dry matter and nutrients were measured during the collection phase. The results from this study suggested that AD and BM can replace poultry meal without any adverse consequences on all measured parameters (p > 0.05). Therefore, AD at 20% or BM at 14% can be used in canine diet formulations. However, long-term feeding trials should be conducted and should focus on clinical signs relating to hypersensitivity disorders.
Background and Aim: Generally, rectal body temperature (BTrectum) is used to prefer as core body temperature in dogs. However, this procedure is time- and labor-consuming with stress induction. Therefore, infrared auricular temperature (BTear) and surface temperature (ST) could be applied to estimate BTrectum. This study aimed to estimate BTrectum from BTear or ST in various areas and determined the factors that influenced the accuracy of prediction equations. Materials and Methods: Under controlled temperature (n=197) and ambient temperature (n=183), the parameters BTrectum, BTear, and ST at internal pinna, auricular canal, lateral aspect of shoulder, hip, axillary area, inguinal area, footpad, and anal area (STrectum) were measured. In addition, temperature and humidity levels of the surrounding environment were recorded. The correlation between each measurement technique was calculated. The BTrectum prediction equation was created using all measured data and several influencing factors (environmental condition, size, coat type, and body condition score [BCS]). Results: The highest correlation with BTrectum was observed for BTear (r=0.61, p<0.01), which was similar to STrectum (r=0.61, p<0.01). Based on multiple linear regression model results using BTrectum as the dependent variable, BTear or STrectum were first selected as independent variables in all estimation equations. Ambient temperatures (R2=0.397), small breed (R2=0.582), long hair (R2=0.418), and/or a BCS of 2 (R2=0.557) provided the highest coefficients of determination of the prediction equation. Conclusion: The most appropriate predictors for estimating BTrectum were STrectum and BTear, which were impacted by the dog's signalments and the environment. To obtain satisfactory outcomes, the equation must be selected depending on the dog's signalments and the environmental conditions. However, based on the findings of this investigation, the accuracy remains low in several equations, and further studies are needed to improve the accuracy of the equation, mainly by increasing the sample size and developing a specific equation for each dog's signaling and environmental condition.
Background and Aim: The use of antibiotics is associated with many side effects, with the development of bacterial resistance being particularly important. It has been found that dogs and their owners host similar resistant bacteria. This contributes to increased concurrent bacterial resistance and a possible trend of increased bacterial resistance in humans. Thus, using probiotics in dogs is an alternative option for preventing and reducing the transmission of bacterial resistance from dogs to humans. Probiotics are characterized by their potential to endure low pH levels and high concentrations of bile acids in the gastrointestinal tract. Lactobacilli are more acid-tolerant and resistant to bile acid, so they are ideal probiotics to be added to the canine diet. According to the previous studies, the benefits of Lactobacillus are a stable nutritional status and greater digestibility, along with improved fecal scores and reduced ammonia in dogs. However, no studies have been conducted with Lactobacillus plantarum CM20-8 (TISTR 2676), Lactobacillus acidophilus Im10 (TISTR 2734), Lactobacillus rhamnosus L12-2 (TISTR 2716), Lactobacillus paracasei KT-5 (TISTR 2688), and Lactobacillus fermentum CM14-8 (TISTR 2720), or their use in combination. Hence, the aim of this study was to examine the possible effects of the aforementioned Lactobacillus on hematological indices, nutritional status, digestibility, enzyme activities, and immunity in dogs. From the results, a new and safe strain of Lactobacillus may emerge for use as a probiotic in the future. Materials and Methods: In this study, 35 dogs were allocated equally into seven groups: Group 1 received a basal diet (control), while Groups 2–7 received the same diet further supplemented with L. plantarum CM20-8 (TISTR 2676), L. acidophilus Im10 (TISTR 2734), L. rhamnosus L12-2 (TISTR 2716), L. paracasei KT-5 (TISTR 2688), L. fermentum CM14-8 (TISTR 2720), or a mixture of probiotics (L. plantarum, L. acidophilus, L. rhamnosus, L. paracasei, and L. fermentum), respectively. All probiotics were administered at a dose of 109 colony-forming unit/dog for 28 days. Nutritional status, hematology, serum biochemistry, digestibility, enzyme activities, and immunity parameters were assessed. Results: There were no differences among the groups in body weight, feed intake, body condition score, fecal score, and fecal dry matter on the different sampling days. The hematology and serum biochemical analyses showed a difference only in creatinine activity (p < 0.001), with higher values in group L. fermentum CM14-8 (TISTR 2720) and lower values in group L. paracasei KT-5 (TISTR 2688) than in controls. However, all measurements were within the normal laboratory reference ranges. Fecal characteristics (fecal ammonia and fecal pH), fecal digestive enzyme activities, serum immunoglobulin (IgG), and fecal IgA did not differ significantly among the groups (p > 0.05). Conclusion: Lactobacillus plantarum CM20-8 (TISTR 2676), L. acidophilus Im10 (TISTR 2734), L. rhamnosus L12-2 (TISTR 2716), L. paracasei KT-5 (TISTR 2688), and L. fermentum CM14-8 (TISTR 2720), along with their mixture are safe and non-pathogenic additives for use as new probiotic strains of Lactobacillus in dogs. Although the new Lactobacillus strains had no effect on hematology, serum biochemistry, nutritional status, digestive enzyme activities, immunity, body weight, feed intake, or body condition scores in dogs, further studies should investigate the intestinal microbiota and the development of clinical treatments. Keywords: digestibility, Lactobacillus, nutritional status, probiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.