Purpose: The ultimate aim of this study is to observe the effect of Green tea as a co-antioxidant in PAGAT gel dosimeter and evaluate the appropriate light source for scanning the PAGAT and NIPAM polymer gel. Methods: Both PAGAT (Poly Acrylamide Gelatin Tetrakis hydroxyl phosphonium chloride) and NIPAM (N-Isopropyl acrylamide) gel were prepared in normoxic condition. The green tea extract (GTE) was prepared and tested only on PAGAT. Co-60 teletherapy machine has been used for irradiation purpose, and the gel samples were scanned using UV-Visible spectrophotometer. Water equivalency of the gel has been tested in terms of their electron density, effective atomic number and Ratio of oxygen and hydrogen (O/H). We have used NIST XCOM database to test the water equivalency. Results: In this study we found that the GTE added to the gel do not respond to the given doses. By adding sugar we can enhance the sensitivity of the gel. Further investigations are required to use Green tea as a co antioxidant concentration of THPC (Tetrakis hydroxymethyl phosphonium chloride). The optimal wavelength with different region for scanning the PAGAT is 450 to 480 nm (Blue region), for NIPAM it is 540 nm and 570 nm (Green and yellow region). The PAGAT and NIPAM showed better sensitivity at 510 nm. Both gels have their effective atomic number closer to water (NIPAM-7.2, PAGAT-7.379). Conclusion: As per our results, we concluded that GTE alone is not an effective co-antioxidant for polymer gels. When the GTE is combined with sugar and THPC, it protects the gel from pre-polymerization. This study strongly suggests that the blue light is an optimal source for scanning the PAGAT and green to yellow light for NIPAM gel. Though both gels were considered as water equivalent, the PAGAT is equivalent to water and the temporal stability of this gel is higher than NIPAM.
In this paper, a numerical simulation technique is developed to investigate the qualitative and quantitative behaviour of Cu‐nanoparticles in a porous medium vis‐a‐vis the heat transfer enhancements—buoyancy driven flow in a two‐dimensional square cavity, with moving walls is presented. The model utilizes the finite volume approach to solve the Brinkman–Darcy equations for Cu‐nanoparticles in a porous media. Discretization is carried out for convective and diffusive fluxes using Quadratic Upwind Interpolation for Convective Kinematics (QUICK) and central difference schemes, respectively. Tri‐Diagonal Matrix Algorithm is invoked to solve the set of algebraic equations. The Darcy number (Da), Prandtl number (Pr), and volume fraction (χ) are varied from 10−3 to 10−1, 3 to 7, and 0% to 20%, respectively. Insight into the cause of variations in isotherms, streamlines, Nusselt number (Nu), and mid‐plane velocities is explicated. The present numerical results are compared with the existing literature and found to be in good agreement. Even though nanoparticles slightly hinder the activity of the fluid, they can augment the average Nu by 90% for Pr = 7, Da = 0.1, and χ = 20% as compared to the absence of nanoparticles. Their efficacy is more prominent for flows with higher Da and Pr. Quantitative values for Nu were obtained for various combinations of Pr, Da, and χ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.