BackgroundMost published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) ‘Hongyang’ draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models.ResultsA second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within ‘Hongyang’ The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned ‘Hort16A’ cDNAs and comparing with the predicted protein models for Red5 and both the original ‘Hongyang’ assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised ‘Hongyang’ annotation, respectively, compared with 90.9% to the Red5 models.ConclusionsOur study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4656-3) contains supplementary material, which is available to authorized users.
SummaryPotato is the third most important global food crop and the most widely grown noncereal crop. As a species highly amenable to cell culture, it has a long history of biotechnology applications for crop improvement. This review begins with a historical perspective on potato improvement using biotechnology encompassing pathogen elimination, wide hybridization, ploidy manipulation and applications of cell culture. We describe the past developments and new approaches for gene transfer to potato. Transformation is highly effective for adding single genes to existing elite potato clones with no, or minimal, disturbances to their genetic background and represents the only effective way to produce isogenic lines of specific genotypes/cultivars. This is virtually impossible via traditional breeding as, due to the high heterozygosity in the tetraploid potato genome, the genetic integrity of potato clones is lost upon sexual reproduction as a result of allele segregation. These genetic attributes have also provided challenges for the development of genetic maps and applications of molecular markers and genomics in potato breeding. Various molecular approaches used to characterize loci, (candidate) genes and alleles in potato, and associating phenotype with genotype are also described. The recent determination of the potato genome sequence has presented new opportunities for genomewide assays to provide tools for gene discovery and enabling the development of robustly unique marker haplotypes spanning QTL regions. The latter will be useful in introgression breeding and whole-genome approaches such as genomic selection to improve the efficiency of selecting elite clones and enhancing genetic gain over time.
In transgenic potato it is often desirable to couple high-level expression in foliage with no expression in the edible tubers, especially for resistance to pests that primarily infest foliage. To accomplish this we have investigated the use of a light inducible Lhca3 promoter for transcriptional control of cry1Ac9 and cry9Aa2 genes for resistance to potato tuber moth (PTM) (Phthorimaea operculella). Thirty-five and thirty-one independently derived transgenic lines of potato cultivar Iwa were regenerated for the cry1Ac9 and cry9Aa2 genes respectively. Significantly inhibited larval growth of PTM on excised greenhouse-grown leaves was observed in 51% of the cry1Ac9-trangenic lines and 84% of the cry9Aa2-transgenic lines. RT-PCR analysis identified several transgenic lines with high levels of cry gene mRNA in leaves and no to low levels in tubers. Southern and ELISA analyses on eight selected cry1Ac9-transgenic lines revealed that they contained 2 to 9 copies of the cry1Ac9 gene and the amount of Cry protein in leaves was less than 60 ng g −1 of fresh leaf tissue. Southern analysis for four selected cry9Aa2-transgenic lines revealed that they contained 2 to 6 copies of the cry9Aa2 gene. This study has established that the expression of either the cry1Ac9 gene or the cry9Aa2 gene in transgenic potato plants offers protection against PTM larval damage in foliage when expressed under the transcriptional control of a Lhca3 light-inducible promoter. Several transgenic lines were identified with high cry gene expression, high resistance to PTM larvae in the foliage, and no or minimal cry gene expression in tubers.
BackgroundTuber appearance is highly variable in the Andean cultivated potato germplasm. The diploid backcross mapping population ‘DMDD’ derived from the recently sequenced genome ‘DM’ represents a sample of the allelic variation for tuber shape and eye depth present in the Andean landraces. Here we evaluate the utility of morphological descriptors for tuber shape for identification of genetic loci responsible for the shape and eye depth variation.ResultsSubjective morphological descriptors and objective tuber length and width measurements were used for assessment of variation in tuber shape and eye depth. Phenotypic data obtained from three trials and male–female based genetic maps were used for quantitative trait locus (QTL) identification. Seven morphological tuber shapes were identified within the population. A continuous distribution of phenotypes was found using the ratio of tuber length to tuber width and a QTL was identified in the paternal map on chromosome 10. Using toPt-437059, the marker at the peak of this QTL, the seven tuber shapes were classified into two groups: cylindrical and non-cylindrical. In the first group, shapes classified as ‘compressed’, ‘round’, ‘oblong’, and ‘long-oblong’ mainly carried a marker allele originating from the male parent. The tubers in this group had deeper eyes, for which a strong QTL was found at the same location on chromosome 10 of the paternal map. The non-cylindrical tubers classified as ‘obovoid’, ‘elliptic’, and ‘elongated’ were in the second group, mostly lacking the marker allele originating from the male parent. The main QTL for shape and eye depth were located in the same genomic region as the previously mapped dominant genes for round tuber shape and eye depth. A number of candidate genes underlying the significant QTL markers for tuber shape and eye depth were identified.ConclusionsUtilization of a molecular marker at the shape and eye depth QTL enabled the reclassification of the variation in general tuber shape to two main groups. Quantitative measurement of the length and width at different parts of the tuber is recommended to accompany the morphological descriptor classification to correctly capture the shape variation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-015-0213-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.