In elastography, conventional linear array (CLA)-based RF data acquisition provides more accurate displacement measurements in the direction of beam propagation (axial direction) when compared to the perpendicular direction (lateral). Obtaining good quality lateral displacement estimates in ultrasound (US) elastography will lead to several benefits such as obtaining accurate inverse solutions, improving shear strain elastogram quality, getting good quality poroelastograms, and obtaining reliable rotation elastograms. For accomplishing high-precision lateral displacement estimation (LDE), one of the popular methods is by interpolating additional A-lines in between neighboring RF A-lines. We describe a method wherein true RF A-lines (not interpolated) are acquired and augmented at subpitch locations using CLA transducer, instead of interpolating the data, and using this new frame data for further image formation and/or processing to yield better lateral resolution and LDE. We demonstrate the proposed method by translating the US beam of CLA transducer in subpitch range by the following two approaches: 1) actuator-assisted beam translation and 2) electronic translation of subaperture of a CLA by activating odd and even number of consecutive elements sequentially, referred to as electronic beam translation. The performances of the different methods were studied through simulations and experiments on phantoms. The results demonstrate that these methods yield better quality LDE compared to those obtained from interpolation of RF A-lines. These methods may provide affordable ways to obtain subpitch precision LDE using CLA.
In conventional linear array (CLA)–based elastography tissue compression in one direction (e.g., axial) leads to an expansion in all other directions (lateral, elevation). Therefore, the estimation of the lateral displacements and strains may provide additional information on the tissue mechanical properties. However, these are not exploited fully due to the inherent limitation in lateral sampling. Recently, a method named actuator-assisted beam translation (ABT) was demonstrated to address this issue, wherein the focused beam was translated at subpitch locations using an external bench-top setup. However, because such bench-top setup may be impractical for routine clinical use, an ultrasound transducer was customized to have an internal actuator. The performance of the customized transducer was studied through experiments on phantoms for rotation elastography application, which requires precise lateral displacement estimation. Furthermore, the results obtained from ABT was compared against the currently practiced spatial displacement compounding (SDC) method, which is known to yield better quality lateral displacement estimates than conventional approaches. The results show that the ABT method yields a full-width half-maximum (FWHM) value, taken from the lateral profile across a point scatterer, which is 65% and 24% smaller than that obtained using CLA and SDC methods, respectively. Furthermore, the contrast-to-noise ratio (CNR) estimated from rotation elastogram obtained using ABT method is better by 300% and 35% compared with that obtained by using CLA and SDC methods, respectively. Furthermore, the results demonstrate an additional advantage of having larger field of view (FoV) for the ABT method compared with spatial compounding approach.
It is known that the elasticity of liver reduces progressively in the case of diffuse liver disease. Currently, the diagnosis of diffuse liver disease requires a biopsy, which is an invasive procedure. In this paper, we evaluate and report a noninvasive method that can be used to quantify liver stiffness using quasi-static ultrasound elastography approach. Quasi-static elastography is popular in clinical applications where the qualitative assessment of relative tissue stiffness is enough, whereas its potential is relatively underutilized in liver imaging due to lack of local stiffness contrast in the case of diffuse liver disease. Recently, we demonstrated an approach of using a calibrated reference layer to produce quantitative modulus elastograms of the target tissue in simulations and phantom experiments. In a separate work, we reported the development of a compact handheld device to reduce inter- and intraoperator variability in freehand elastography. In this work, we have integrated the reference layer with a handheld controlled compression device and evaluate it for quantitative liver stiffness imaging application. The performance of this technique was assessed on ex vivo goat liver samples. The Young’s modulus values obtained from indentation measurements of liver samples acted as the ground truth for comparison. The results from this work demonstrate that by combining the handheld device along with reference layer, the estimated Young’s modulus value approaches the ground truth with less error compared with that obtained using freehand compression (8% vs. 15%). The results suggest that the intra- and interoperator reproducibility of the liver elasticity also improved when using the handheld device. Elastography with a handheld compression device and reference layer is a reliable and simple technique to provide a quantitative measure of elasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.