Background
Reperfusion following ischemia leads to neutrophil recruitment injured tissue. Selectins and β2 integrins regulate neutrophil interaction with the endothelium during neutrophil rolling and firm adhesion. Excessive neutrophil infiltration into tissue is thought to contribute to IRI damage. NaHS mitigates the damage caused by ischemia-reperfusion injury (IRI). This study's objective was to determine the effect of hydrogen sulfide (NaHS) on neutrophil adhesion receptor expression.
Methods
Human neutrophils were either left untreated or incubated in 20 μM NaHS, and/or 50 μg/mL pharmacological ADAM-17 inhibitor TAPI-0; activated by IL-8, fMLP, or TNF-α; and labeled against PSGL-1, LFA-1, Mac-1 α, L-selectin and β2 integrin epitopes CBRM1/5 or KIM127 for flow cytometry. Cohorts of 3 C57BL/6 mice received an intravenous dose of saline vehicle, or 20 μM NaHS with or without 50 μg/mL TAPI-0 before unilateral tourniquet induced hind-limb ischemia for 3 hours followed by 3 hours of reperfusion. Bilateral gastrocnemius muscles were processed for histology before neutrophil infiltration quantification.
Results
NaHS treatment significantly increased L-selectin shedding from human neutrophils following activation by fMLP and IL-8 in an ADAM-17 dependent manner. Mice treated with NaHS to raise bloodstream concentration by 20 μM prior to ischemia or reperfusion showed a significant reduction in neutrophil recruitment into skeletal muscle tissue following tourniquet-induced hindlimb IRI.
Conclusions
NaHS administration results in the downregulation of L-selectin expression in activated human neutrophils. This leads to a reduction in neutrophil extravasation and tissue infiltration and may partially account for the protective effects of NaHS seen in the setting of IRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.