Aims and Objectives:To determine the overall performance of an existing CAD algorithm with thin-section computed tomography (CT) in the detection of pulmonary nodules and to evaluate detection sensitivity at a varying range of nodule density, size, and location.Materials and Methods:A cross-sectional prospective study was conducted on 20 patients with 322 suspected nodules who underwent diagnostic chest imaging using 64-row multi-detector CT. The examinations were evaluated on reconstructed images of 1.4 mm thickness and 0.7 mm interval. Detection of pulmonary nodules, initially by a radiologist of 2 years experience (RAD) and later by CAD lung nodule software was assessed. Then, CAD nodule candidates were accepted or rejected accordingly. Detected nodules were classified based on their size, density, and location. The performance of the RAD and CAD system was compared with the gold standard that is true nodules confirmed by consensus of senior RAD and CAD together. The overall sensitivity and false-positive (FP) rate of CAD software was calculated.Observations and Results:Of the 322 suspected nodules, 221 were classified as true nodules on the consensus of senior RAD and CAD together. Of the true nodules, the RAD detected 206 (93.2%) and 202 (91.4%) by the CAD. CAD and RAD together picked up more number of nodules than either CAD or RAD alone. Overall sensitivity for nodule detection with the CAD program was 91.4%, and FP detection per patient was 5.5%. The CAD showed comparatively higher sensitivity for nodules of size 4–10 mm (93.4%) and nodules in hilar (100%) and central (96.5%) location when compared to RAD's performance.Conclusion:CAD performance was high in detecting pulmonary nodules including the small size and low-density nodules. CAD even with relatively high FP rate, assists and improves RAD's performance as a second reader, especially for nodules located in the central and hilar region and for small nodules by saving RADs time.
Machine learning (ML) has been broadly connected to the upper layers of communication systems for different purposes, for example, arrangement of cognitive radio and communication network. Nevertheless, its application to the physical layer is hindered by complex channel conditions and constrained learning capacity of regular ML algorithms. Deep learning (DL) has been as of late connected for some fields, for example, computer vision and normal dialect preparing, given its expressive limit and advantageous enhancement ability. This paper describes about a novel use of DL for the physical layer. By deciphering a communication system as an auto encoder, we build up an essential better approach to consider communication system outline as a conclusion to-end reproduction undertaking that tries to together enhance transmitter and receiver in a solitary procedure. This DL based technique demonstrates promising execution change than traditional communication system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.