The normal biochemical reactions in our body, increased exposure to the environment, and higher levels of dietary xenobiotic's result in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS).
The functionalized calixarene derivatives exhibit remarkable properties towards organic and bioorganic molecules. However, the ability of calixarene derivatives to form stable complexes with biomolecules allows them to be applied for the development of biosensors and in the field of biology, biotechnology, and drug discovery. The applications of the functionalized calixarenes are summarized in this review, and an outlook for the future developments is discussed. A brief survey (of the last 10 years) on their biological application in various fields is also considered (199 references).
Biomarkers play a vital role in disease detection and treatment follow-up. It is important to note that diseases in the early stage are typically treated with the greatest probability of success. However, due to various technical difficulties in current technologies for the detection of biomarkers, the potential of biomarkers is not explored completely. Therefore, the developments of technologies, which can enable the accurate detection of prostate cancer at an early stage with simple, experimental protocols are highly inevitable. This critical review evaluates the current methods and technologies used in the detection of biomarkers. The aim of this article is to provide a comprehensive review covering the advantages and disadvantages of the biomarker detection methods. Future directions for the development of technologies to achieve highly selective and sensitive detection of biomarkers for point-of-care applications are also commented on.
The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials) on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers fail to position the molecules on the nanometer scale to produce highly organized monolayers on the surface. The present article elaborates different techniques for the immobilization of the biomolecules on the surface to produce microarrays and their diagnostic applications. The advantages and the drawbacks of various methods are compared. This article also sheds light on the applications of the different technologies for the detection and discrimination of viral/bacterial genotypes and the detection of the biomarkers. A brief survey with 115 references covering the last 10 years on the biological applications of microarrays in various fields is also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.