Present work proposes green synthesis of reduced graphene oxide using lemon peel extract(vitamin-c) and its application as an electrochemical nonenzymatic human serum glucose sensor. Improved modified Hummer's method was preferred for the preparation of graphene oxide. X-ray diffraction (XRD), Ultraviolet-visible absorption spectroscopy (UV-Vis) and X-ray photon spectroscopy (XPS) analysis revealed the successful reduction of Graphene oxide (GO) using lemon peel extract. Field emission scanning electron microscopy (FESEM), Fourier transform infra-red spectroscopy (FTIR) and Raman spectroscopy supports the formation of reduced graphene oxide (rGO) nanosheets. The proposed glucose sensor exhibits high sensitivity of 1402 μA•cm −2 mM −1 (S/N=3) along with correlation coefficient of 0.9887 and low detection limit of 0.011 μM. The sensor has detected glucose with RSD of 1.99% in human blood serum. The measured values are well agreed with the values obtained using professional glucose sensor used in hospitals.
Carbonized sugar (CS) has been synthesized via microwave-assisted carbonization of market-quality tabletop sugar bearing in mind the advantages of this synthesis method, such as being useful, cost-effective, and eco-friendly. The as-prepared CS has been characterized for its morphology, phase purity, type of porosity, pore-size distribution, and so on. The gas-sensing properties of CS for various oxidizing and reducing gases are demonstrated at ambient temperature, where we observe good selectivity toward liquid ammonia among other gases. The highest ammonia response (50%) of a CS-based sensor was noted at 80 °C for 100 ppm concentration. The response and recovery times of the CS sensor are 180 and 216 s, respectively. This unveiling ammonia-sensing study is explored through a plausible theoretical mechanism, which is further well-supported by computational modeling performed using density function theory. The effect of relative humidity on the CS sensor has also been studied at ambient temperature, which demonstrated that the minimum and maximum (20-100%) relative humidity values revealed 16 and 62% response, respectively.
A low-temperature (90 °C) and directly grown anatase titanium dioxide (TiO2) nanocrystalline film using successive ionic layer adsorption and reaction (SILAR) for perovskite solar cell and gas sensor applications. TiO2 nanocrystalline electron transfer layer (ETL) improves the power conversion efficiency (PCE) of perovskite solar cells due to faster charge transport kinetics as well as slower charge recombination process. The optimized TiO2 nanocrystalline ETL (15 L) demonstrates as high as ~10% PCE with a short circuit current density of 18.0 mA/cm2, open circuit voltage of 0.81 V and fill factor of 66.3% in perovskite solar cells. Furthermore, room-temperature ammonia sensing characteristics of TiO2 nanocrystalline film (25 L) were demonstrated for various concentration levels of ammonia in dry air conditions. A high room-temperature response of 80% was achieved at 100 ppm of ammonia with rapid response and recovery signatures of 30 and 85 s, and nearly fifteen days stability, respectively. The response of the sensor to other gases such as formaldehyde, petrol, ethanol acetone, and ammonia etc, indicated a high selectivity towards volatile organic compounds of ammonia gas. The room temperature operation, with high selectivity, repeatability and fast transition times, suggests potentially useful in flexible and cost-effective production in optoelectrochemical device technology.
The important electrochemical measurements of reduced graphene oxide-titanium oxide (rGO)/TiO2) electrodes for the application of a glucose sensor are reported in the proposed work. Investigating the sensitivity, stability, and reproducibility of sensor electrodes that were made and used to evaluate the concentration of glucose in the serum is one of the novel aspects of this work. This study presents the use of citrus limetta (sweet lime) fruit peel waste to synthesize a green reduction of graphene oxide (rGO). The rGO/TiO2 composite obtained using the microwave heating method is applied for measuring the structural and morphological properties by various means. A conducting fluorine-tin oxide substrate is used to modify the enzymeless glucose sensor electrode. The electrochemical measurements of rGO/TiO2 sensor electrodes are carried out using the technique of cyclic voltammetry. The rGO/TiO2 sensor electrode exhibits a high sensitivity of 1425 µA/mM cm2 towards glucose concentration in the range of 0.1 to 12 mM. The sensor was found to be extremely stable and repeatable with a response time of 5 s along with a minimum detection limit of 0.32 μM of glucose. The rGO/TiO2 sensor shows relative standard deviation (RSD) of 1.14%, 1.34%, and 1.3% which reveals its excellent stability, repeatability, and reproducibility respectively. The sensor was used for glucose level detection in natural blood serum and shows an RSD of 1.88%. which is in good agreement with the commercial glucose sensor values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.