Overuse of pesticides in agriculture may harm environmental and agricultural yields. Sustainable maintenance of soil fertility and management of the environment have become a concern due to the persistence of pesticides in the soil. Microbes have various mechanisms for the bioremediation of persistent organic pollutants from the environment. A bacterium that degrades clothianidin was isolated from the pesticide and applied to agricultural soil by the enrichment technique. The identity of the bacterium was determined by studying morphological, cultural, and biochemical characteristics and 16S rRNA gene sequences. The ability to metabolize clothianidin was confirmed using UV-visible spectrophotometric, chromatographic, and spectroscopic analyses. A Gram-negative bacterium, designated smk, isolated from clothianidin-contaminated soil was confirmed to be a member of Pseudomonas stutzeri. The biodegradation of clothianidin was studied using P. stutzeri smk. Approximately 62% degradation of clothianidin was achieved within two weeks when grown at 30°C and pH 7. The effects of various physicochemical parameters, including pH, temperature, and clothianidin concentrations, on catabolic rates were studied. The biodegradation studies using UV-Vis spectrophotometry, HPLC, FTIR, and LC-MS indicated the production of the following metabolites: 2-chloro-5-methyl thiazole (CMT), methyl nitroguanidine (MNG), methyl 3-[thiazole-yl], and methyl guanidine (TMG). Identification of specific degradation metabolites indicates that bioremediation of toxic neonicotinoid insecticides may be achieved by application of P. stutzeri smk.
Background and Objectives: Excess use of pesticides in agricultural field not only compromised soil fertility but also posed serious threat to water bodies and life in the surrounding environment. The leftover pesticide residue needs to be remediated effectively. Compared to physical, chemical and enzymatic remediation options the microbial remediation is more practical and sustainable.
Materials and Methods: The Pseudomonas stutzeri smk strain was found to use dichlorvos as the solitary carbon source. Minimal medium supplemented with dichlorvos was used to test ability of bacterium to degrade pesticide aerobically. The metabolites produced by the bacterium were studied with UV-Vis spectrophotometry, HPLC, FTIR and GC-MS techniques. The toxicity studies of neat dichlorvos and P. stutzeri smk degraded metabolites were studied by subcutaneous injection in Mus musculus.
Results: The P. stutzeri smk strain was found to degrade as high as 80% of dichlorvos on 7th day of incubation, at 30 °C tem- perature and at pH 7. In five steps complete aerobic degradation of 2,2dicholorvinyl dimethyl phosphate (dichlorvos) resulted in production of free methyl and phosphate. The degradation intermediates produced are 2-Chlorovinyl dimethyl phosphate, vinyl dimethyl phosphate, dimethyl phosphate, methylphosphate and finally free phosphate. The histopathological analysis of liver, spleen and thymus of M. musculus were performed to study toxicity of dichlorvos and degraded metabolites. Conclusion: P. stutzeri smk could result highest aerobic degradation of dichlorvos to produce free methyl and phosphate. Degradation metabolites could reverse largely toxic effects of dichlorvos when studied in M. musculus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.