BackgroundThe enteric pathogen Salmonella is the causative agent of the majority of food-borne bacterial poisonings. Resent research revealed that colonization of plants by Salmonella is an active infection process. Salmonella changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we developed an automatic algorithm to quantify the symptoms caused by Salmonella infection on Arabidopsis.ResultsThe algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In the second step, a support vector machine (SVM) is applied to predict the class of each pixel belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from the second step. The developed algorithm was tested on infection with the non-pathogenic E. coli and the plant pathogen Pseudomonas syringae and used to study the interaction between plants and Salmonella wild type and T3SS mutants. We proved that T3SS mutants of Salmonella are unable to suppress the plant defenses. Results obtained through the automatic analyses were further verified on biochemical and transcriptome levels.ConclusionThis report presents an automatic pixel-based classification method for detecting “unhealthy” regions in leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this algorithm to study the impact of the human pathogenic bacterium Salmonella Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information, or even extended to other features.
Detection of cars has a high variety of civil and military applications, e.g., transportation control, traffic monitoring, and surveillance. It forms an important aspect in the deployment of autonomous unmanned aerial systems in rescue or surveillance missions. In this paper, we present a two-stage algorithm for detecting automobiles in aerial digital images. In the first stage, a feature-based detection is performed, based on local histogram of oriented gradients and support vector machine classification. Next, a generative statistical model is used to generate a ranking for each patch. The ranking can be used as a measure of confidence or a threshold to eliminate those patches that are least likely to be an automobile. We analyze the results obtained from three different types of data sets. In various experiments, we present the performance improvement of this approach compared to a discriminative-only approach; the false alarm rate is reduced by a factor of 7 with only a 10% drop in the recall rate
Passive millimeter-wave imaging systems can play a significant role in security applications. Especially, the detection of hidden threats for border security is a growing field. In this paper we propose a novel approach for automatic threat detection using multiple 94 GHz passive millimeter-wave images. Herein, we discuss four steps essential to solving the task: pre-processing, region-of-interest extraction, threat extraction in each frame and, finally, intelligent fusion of the results from all frames. Besides, showing that the proposed method works reliably for the data-set at hand, we also discuss the advantages of using this method in contrast to state-of-the-art methods
Vehicle detection in aerial images plays a key role in surveillance, transportation control and traffic monitoring. It forms an important aspect in the deployment of autonomous Unmanned Aerial System (UAS) in rescue and surveillance missions. In this paper, we propose a two-stage algorithm for efficient detection of cars in aerial images. We discuss how sophisticated detection technique may not give the best result when applied to large scale images with complicated backgrounds. We use a relaxed version of HOG (Histogram of Oriented Gradients) and SVM (Support Vector Machine) to extract hypothesis windows in the first stage. The second stage is based on discriminatively trained part-based models. We create a richer model to be used for detection from the hypothesis windows by detecting and locating parts in the root object. Using a two-stage detection procedure not only improves the accuracy of the overall detection but also helps us take complete advantage of the accuracy of sophisticated algorithms ruling out it's incompetence in real scenarios. We analyze the results obtained from Google Earth dataset and also the images taken from a camera mounted beneath a flying aircraft. With our approach we could achieve a recall rate of 90% with a precision of 94%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.