Metal matrix composites (MMCs) are attracting automobile and aeronautical sector because of their superior mechanical and physical characteristics which ultimately reduce the weight of components and hence the energy requirements. These composites are prepared by adding various reinforcements into the base metal by the methods like stir casting, squeeze casting, stir and squeeze casting, sand casting, in-setu method, powder metallurgy etc. When more than one particle is added into the base metal; these composites are called as Hybrid Metal Matrix Composites (HMMCs). The machinability of these hard to cut materials is a challenging task in front of manufacturing industry. Present study considers turning operation of HMMC done on either lathe or CNC machine by using different cutting tool materials. This review focuses on effect of various cutting parameters like speed, depth of cut, feed and also the parameters like reinforcement particle type, particle size and weight percentage on the machinability issues like surface roughness, MRR, cutting forces, tool wear etc. Further the various optimization methods used to suggest the cutting parameters to obtain minimum surface roughness, minimum cutting forces, minimum tool wear and maximum Material Removal Rate (MRR) are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.