RNA interference (RNAi) has become a widely used reverse genetic tool to study gene function in eukaryotic organisms and is being developed as a technology for insect pest management. The efficiency of RNAi varies among organisms. Insects from different orders also display differential efficiency of RNAi, ranging from highly efficient (coleopterans) to very low efficient (lepidopterans). We investigated the reasons for varying RNAi efficiency between lepidopteran and coleopteran cell lines and also between the Colorado potato beetle, Leptinotarsa decemlineata and tobacco budworm, Heliothis virescens. The dsRNA either injected or fed was degraded faster in H. virescens than in L. decemlineata. Both lepidopteran and coleopteran cell lines and tissues efficiently took up the dsRNA. Interestingly, the dsRNA administered to coleopteran cell lines and tissues was taken up and processed to siRNA whereas the dsRNA was taken up by lepidopteran cell lines and tissues but no siRNA was detected in the total RNA isolated from these cell lines and tissues. The data included in this paper showed that the degradation and intracellular transport of dsRNA are the major factors responsible for reduced RNAi efficiency in lepidopteran insects.
RNA interference (RNAi) based methods are being developed for pest management. A few products for control of coleopteran pests are expected to be commercialized soon. However, variability in RNAi efficiency among insects is preventing the widespread use of this technology. In this study, we conducted research to identify reasons for variability in RNAi efficiency among thirty-seven (37) insects belonging to five orders. Studies on double-stranded RNA (dsRNA) degradation by dsRNases and processing of labeled dsRNA to siRNA showed that both dsRNA degradation and processing are variable among insects belonging to different orders as well as among different insect species within the same order. We identified homologs of key RNAi genes in the genomes of some of these insects and studied their domain architecture. These data suggest that dsRNA digestion by dsRNases and its processing to siRNAs in the cells are among the major factors contributing to differential RNAi efficiency reported among insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.