Ten years ago, a consensus report on the optimization of tacrolimus was published in this journal. In 2017, the Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicity (IATDMCT) decided to issue an updated consensus report considering the most relevant advances in tacrolimus pharmacokinetics (PK), pharmacogenetics (PG), pharmacodynamics, and immunologic biomarkers, with the aim to provide analytical and drug-exposure recommendations to assist TDM professionals and clinicians to individualize tacrolimus TDM and treatment. The consensus is based on in-depth literature searches regarding each topic that is addressed in this document. Thirty-seven international experts in the field of TDM of tacrolimus as well as its PG and biomarkers contributed to the drafting of sections most relevant for their expertise. Whenever applicable, the quality of evidence and the strength of recommendations were graded according to a published grading guide. After iterated editing, the final version of the complete document was approved by all authors. For each category of solid organ and stem cell transplantation, the current state of PK monitoring is discussed and the specific targets of tacrolimus trough concentrations (predose sample C0) are presented for subgroups of patients along with the grading of these recommendations. In addition, tacrolimus area under the concentration–time curve determination is proposed as the best TDM option early after transplantation, at the time of immunosuppression minimization, for special populations, and specific clinical situations. For indications other than transplantation, the potentially effective tacrolimus concentrations in systemic treatment are discussed without formal grading. The importance of consistency, calibration, proficiency testing, and the requirement for standardization and need for traceability and reference materials is highlighted. The status for alternative approaches for tacrolimus TDM is presented including dried blood spots, volumetric absorptive microsampling, and the development of intracellular measurements of tacrolimus. The association between CYP3A5 genotype and tacrolimus dose requirement is consistent (Grading A I). So far, pharmacodynamic and immunologic biomarkers have not entered routine monitoring, but determination of residual nuclear factor of activated T cells–regulated gene expression supports the identification of renal transplant recipients at risk of rejection, infections, and malignancy (B II). In addition, monitoring intracellular T-cell IFN-g production can help to identify kidney and liver transplant recipients at high risk of acute rejection (B II) and select good candidates for immunosuppression minimization (B II). Although cell-free DNA seems a promising biomarker of acute donor injury and to assess the minimally effective C0 of tacrolimus, multicenter prospective interventional studies are required to better evaluate its clinical utility in solid organ transplantation. Population PK models including CYP3A5 and CYP3A4 genotypes will be considered to guide initial tacrolimus dosing. Future studies should investigate the clinical benefit of time-to-event models to better evaluate biomarkers as predictive of personal response, the risk of rejection, and graft outcome. The Expert Committee concludes that considerable advances in the different fields of tacrolimus monitoring have been achieved during this last decade. Continued efforts should focus on the opportunities to implement in clinical routine the combination of new standardized PK approaches with PG, and valid biomarkers to further personalize tacrolimus therapy and to improve long-term outcomes for treated patients.
The substrate specificities of human (h) multidrug and toxin extrusion (MATE) 1 and hMATE2-K were examined to find functional differences between these two transporters by the transfection of the cDNA of hMATE1 and hMATE2-K into HEK293 cells. Western blotting revealed specific signals for hMATE1 and hMATE2-K consistent with a size of 50 and 40kDa, respectively, in the transfectants as well as human renal brush-border membranes under reducing conditions. In the presence of oppositely directed H(+)-gradient, the transport activities of various compounds such as tetraethylammonium, 1-methyl-4-phenylpyridinium, cimetidine, metformin, creatinine, guanidine, procainamide, and topotecan were stimulated in hMATE1- and hMATE2-K-expressing cells. In addition to cationic compounds, anionic estrone sulfate, acyclovir, and ganciclovir were also recognized as substrates of these transporters. Kinetic analyses demonstrated the Michaelis-Menten constants for the hMATE1-mediated transport of tetraethylammonium, 1-methyl-4-phenylpyridinium, cimetidine, metformin, guanidine, procainamide, topotecan, estrone sulfate, acycrovir, and ganciclovir to be (in mM) 0.38, 0.10, 0.17, 0.78, 2.10, 1.23, 0.07, 0.47, 2.64, and 5.12, respectively. Those for hMATE2-K were 0.76, 0.11, 0.12, 1.98, 4.20, 1.58, 0.06, 0.85, 4.32, and 4.28, respectively. Although their affinity for hMATE1 and hMATE2-K was similar, the zwitterionic cephalexin and cephradine were revealed to be specific substrates of hMATE1, but not of hMATE2-K. Levofloxacin and ciprofloxacin were not transported, but were demonstrated to be potent inhibitors of these transporters. These results suggest that hMATE1 and hMATE2-K function together as a detoxication system, by mediating the tubular secretion of intracellular ionic compounds across the brush-border membranes of the kidney.
The kidney plays an important role in the elimination of numerous hydrophilic xenobiotics, including drugs, toxins, and endogenous compounds. It has developed high-capacity transport systems to prevent urinary loss of filtered nutrients, as well as electrolytes, and simultaneously to facilitate tubular secretion of a wide range of organic ions. Transport systems for organic anions and cations are primarily involved in the secretion of drugs in renal tubules. The identification and characterization of organic anion and cation transporters have been progressing at the molecular level. To date, many members of the organic anion transporter (OAT), organic cation transporter (OCT), and organic anion-transporting polypeptide (oatp) gene families have been found to mediate the transport of diverse organic anions and cations. It has also been suggested that ATP-dependent primary active transporters such as MDR1/P-glycoprotein and the multidrug resistance-associated protein (MRP) gene family function as efflux pumps of renal tubular cells for more hydrophobic molecules and anionic conjugates. Tubular reabsorption of peptide-like drugs such as beta-lactam antibiotics across the brush-border membranes appears to be mediated by two distinct H+/peptide cotransporters: PEPT1 and PEPT2. Renal disposition of drugs is the consequence of interaction and/or transport via these diverse secretory and absorptive transporters in renal tubules. Studies of the functional characteristics, such as substrate specificity and transport mechanisms, and of the localization of cloned drug transporters could provide information regarding the cellular network involved in renal handling of drugs. Detailed information concerning molecular and cellular aspects of drug transporters expressed in the kidney has facilitated studies of the mechanisms underlying renal disposition as well as transporter-mediated drug interactions.
We have examined the role of the human organic cation transporters [hOCTs and human novel organic cation transporter (hOCTN); SLC22A1-5] and apical multidrug and toxin extrusion (hMATE) in the cellular accumulation and cytotoxicity of platinum agents using the human embryonic kidney (HEK) 293 cells transiently transfected with the transporter cDNAs. Both the cytotoxicity and accumulation of cisplatin were enhanced by the expression of hOCT2 and weakly by hOCT1, and those of oxaliplatin were also enhanced by the expression of hOCT2 and weakly by hOCT3. The hOCT-mediated uptake of tetraethylammonium (TEA) was markedly decreased in the presence of cisplatin in a concentration-dependent manner. However, oxaliplatin showed almost no influence on the TEA uptakes in the HEK293 cells expressing hOCT1, hOCT2, and hOCT3. The hMATE1 and hMATE2-K, but not hOCTN1 and OCTN2, mediated the cellular accumulation of cisplatin and oxaliplatin without a marked release of lactate dehydrogenase. Oxaliplatin, but not cisplatin, markedly decreased the hMATE2-K-mediated TEA uptake. However, the inhibitory effect of cisplatin and oxaliplatin against the hMATE1-mediated TEA uptake was similar. The release of lactate dehydrogenase and the cellular accumulation of carboplatin and nedaplatin were not found in the HEK293 cells transiently expressing these seven organic cation transporters. These results indicate that cisplatin is a relatively good substrate of hOCT1, hOCT2, and hMATE1, and oxaliplatin is of hOCT2, hOCT3, hMATE1, and hMATE2-K. These transporters could play predominant roles in the tissue distribution and anticancer effects and/or adverse effects of platinum agent-based chemotherapy.Four platinum-based anticancer drugs are currently registered for clinical use. cis-Diamminedichloroplatinum II (cisplatin) has been clinically used for over 30 years and continues to play an essential role in cancer chemotherapy against solid tumors of the prostate, bladder, colon, lung, testis, liver, and brain (Ho et al., 2003). However, severe nephrotoxicity limits its clinical application because it was reported that an increase in the serum creatinine concentration was observed in 41% of patients treated with a high dose of cisplatin (de Jongh et al., 2003). cis-Diammine(1,1-cyclobutanedicarboxylato)platinum II (carboplatin), trans-L-1,2-diaminocyclohexaneoxalatoplatinum II (oxaliplatin), and cis-diammineglycolatoplatinum (nedaplatin) are analogs of cisplatin and show a lowered nephrotoxicity compared with cisplatin. However, it is not clear why the nephrotoxicity of these analogs is low, although cisplatin induces severe nephrotoxicity. The chemical structures of platinum agents are shown in Fig.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.