Recently, the SOX2 gene has been reported to be amplified in human lung squamous cell carcinomas. However, its roles in human lung adenocarcinomas are still elusive. In this study, we analyzed the functions of SOX2 in cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) derived from human lung adenocarcinoma. Human lung CSCs/CICs were isolated as higher tumorigenic side population (SP) cells using Hoechst 33342 dye from several lung cancer cell lines. Four of nine lung cancer cell lines were positive for SP cells (LHK2, 1-87, A549, Lc817). The ratios of SP cells ranged from 0.4% for Lc817 to 2.8% for LHK2. To analyze the molecular aspects of SP cells, we performed microarray screening and RT-PCR analysis, and isolated SOX2 as one of a SP cell-specific gene. SOX2 was expressed predominantly in LHK2 and 1-87 SP cells, and was also expressed in several other cancer cell lines. The expression of SOX2 protein in primary human lung cancer tissues were also confirmed by immunohistochemical staining, and SOX2 was detected in more than 80% of primary lung cancer tissues. To address SOX2 molecular functions, we established a SOX2-overexpressed LHK2 and A549 cell line (LHK2-SOX2 and A549-SOX2). LHK2-SOX2 cells showed higher rates of SP cells and higher expression of POU5F1 compared with control cells. LHK2-SOX2 and A549-SOX2 cells showed relatively higher tumorigenicity than control cells. On the other hand, SOX2 mRNA knockdown of LHK2 SP cells by gene-specific siRNA completely abrogated tumorigenicity in vivo. These observations indicate that SOX2 has a role in maintenance of stemness and tumorigenicity of human lung adenocarcinoma CSCs/CICs and is a potential target for treatment.
Cancer stem-like cells (CSCs) and tumor-initiating cells (TICs) are a small population of cancer cells that share three properties: tumor initiating ability, self-renewal, and differentiation. These properties suggest that CSCs/ TICs are essential for tumor maintenance, recurrence, and distant metastasis. Here, we show that cytotoxic T lymphocytes (CTLs) specific for the tumor-associated antigen CEP55 can efficiently recognize colon CSCs/ TICs both in vitro and in vivo. Using Hoechst 33342 dye staining, we isolated CSCs/TICs as side population (SP) cells from colon cancer cell lines SW480, HT29, and HCT15. The SP cells expressed high levels of the stem cell markers SOX2, POU5F1, LGR5, and ALDH1A1 and showed resistance to chemotherapeutic agents such as irinotecan or etoposide.To evaluate the susceptibility of SP cells to CTLs, we used CTL clone 41, which is specific for the CEP55-derived antigenic peptide Cep55/ c10orf3_193 ( Colon cancer is one of the most common malignancies worldwide. With recent progress in treatment, the prognosis has improved to some extent. In advanced disease, however, the prognosis remains unfavorable, because of recurrence, distant metastasis, and resistance to treatment. Thus, novel treatment modalities are needed.Cancers contain morphologically heterogeneous populations. This fact has led to the cancer stem cell theory, 1 the idea that cancers are composed of several types of cells, and that only a small population of cancer cells that can regenerate cancer tissues, much as normal tissue can be regenerated only by a small population of stemlike cells. Recently, cancer stem-like cells and tumorinitiating cells (CSCs/TICs) have been isolated from various types of malignancies, including colon cancer.2-6 In colon cancer, CSCs/TICs can reinitiate tumors that resemble mother colon cancer tissues morphologically when transplanted into immunodeficient mice.3 Furthermore, these CSCs/TICs have higher tumorigenic potential than do non-CSCs/TICs. Previous reports have shown that CSCs/TICs are resistant to a variety of treatments, including chemotherapy and radiotherapy, with varied mechanisms of resistance, including high expression of drug transporters, relative cell cycle quiescence, high levels of DNA repair machinery, and resistance to apoptosis. 7 These reports 3-6 support the hypothesis that malignant cancers comprise heterogeneous populations that organize in a hierarchical differentiation model. The CSCs/TICs are located at the top of this hierarchy, and targeting CSCs/TICs is essential to achieve efficient effects for treatment of malignant diseases. Recently, some trials targeting CSCs/TICs have been reported for hema-
Identification of tumor-associated antigens may facilitate vaccination strategies to treat patients with malignant diseases. We have found that the centrosomal protein, Cep55/c10orf3 acts as a novel breast carcinoma-associated tumor-associated antigen. Cep55/c10orf3 mRNA was detectable in a wide variety of tumor cell lines. Expression was barely detectable in normal tissues except for testis and thymus. Moreover, Cep55/c10orf3 protein could be detected by a monoclonal anti-Cep55/c10orf3 antibody (# 11-55) in 69.8% of breast carcinoma, 25% of colorectal carcinoma, and 57.8% of lung carcinoma tissues. The expression of Cep55/c10orf3 protein did not show any relationship with the hormone receptors such as estrogen receptor and progesterone receptor or expression patterns of p185 HER2/neu. We designed 11 peptides which displayed a human leukocyte antigen-A24 binding motif. One Cep55/c10orf3-peptide, Cep55/c10orf3_193(10) (VYVKGLLAKI), induced cytotoxic T lymphocytes (CTLs) in 3 of 3 patients with Cep55/c10orf3 (# 11-55)-positive breast carcinoma. A Cep55/c10orf3_193(10)-specific CTL clone could also recognize Cep55/c10orf3 (+) displayed on human leukocyte antigen-A24 (+) cancer cell lines. These data indicate that Cep55/c10orf3 peptides were naturally presented by breast cancer cells and can cause CTL clonal expansion in vivo. Monoclonal antibody # 11-55 and the Cep55/c10orf3_193(10) peptides may be useful as part of a therapeutic strategy for hormonal therapy or anti-p185 HER2/neu monoclonal antibody therapy-resistant breast carcinoma patients.
Cancer stem-like cells (CSCs)/tumor-initiating cells (TICs) are a small population of cancer cells that have the properties of tumor-initiating ability, self-renewal and differentiation. These properties suggest that CSCs/TICs are essential for tumor maintenance, recurrence and distant metastasis. Thus, elimination of CSCs/TICs is essential to cure malignant diseases. However, there are several studies reporting that CSCs/TICs are more resistant to standard cancer therapies, including chemotherapy and radiotherapy, than non-CSC/TIC populations. How then, can we eliminate CSCs/TICs? Immunotherapy might be the possible answer. In recent analysis, innate immunity (natural killer cells and gammadeltaT cells) and also adaptive immunity (cytotoxic T lymphocyte-based cellular immunity and antibody-based humoral immunity) can recognize CSCs/TICs in vitro efficiently. Furthermore, CSC/TIC-specific monoclonal antibody therapies are also efficient in vivo. In this article, we describe the potency, possibilities and problems of CSC/TIC-targeting immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.