The first example of a dynamic kinetic resolution of a racemic tertiary alcohol is presented. By combining a lipase-catalyzed kinetic resolution and a racemization with an oxovanadium-catalyst, the ester was obtained in 77% yield and with >99% ee.
A continuous‐flow dynamic kinetic resolution of racemic secondary alcohols was carried out using a single column reactor packed with a mixture of immobilized lipase and an immobilized oxovanadium species, VMPS4. As a result, optically pure esters were produced in 88–92 % yields. Problems encountered in this study were overcome by using fillers that efficiently maintained the initial distribution of the catalysts in the reactor and by using a packing method in which the mixing ratio of the two catalysts was varied in a stepwise fashion. The flow process led to an increased turnover number of each catalyst compared to those of batch reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.