Recruitment of effector T cells to inflamed peripheral tissues is regulated by chemokines and their receptors, but the factors regulating recruitment to tumors remain largely undefined. Ionizing radiation (IR) therapy is a common treatment modality for breast and other cancers. Used as a cytocidal agent for proliferating cancer cells, IR in combination with immunotherapy has been shown to promote immune-mediated tumor destruction in preclinical studies. In this study we demonstrate that IR markedly enhanced the secretion by mouse and human breast cancer cells of CXCL16, a chemokine that binds to CXCR6 on Th1 and activated CD8 effector T cells, and plays an important role in their recruitment to sites of inflammation. Using a poorly immunogenic mouse model of breast cancer, we found that irradiation increased the migration of CD8+CXCR6+ activated T cells to tumors in vitro and in vivo. CXCR6-deficient mice showed reduced infiltration of tumors by activated CD8 T cells and impaired tumor regression following treatment with local IR to the tumor and Abs blocking the negative regulator of T cell activation, CTLA-4. These results provide the first evidence that IR can induce the secretion by cancer cells of proinflammatory chemotactic factors that recruit antitumor effector T cells. The ability of IR to convert tumors into “inflamed” peripheral tissues could be exploited to overcome obstacles at the effector phase of the antitumor immune response and improve the therapeutic efficacy of immunotherapy.
Amyloid -protein (A) assemblies are thought to play primary roles in Alzheimer disease (AD). They are considered to acquire surface tertiary structures, not present in physiologic monomers, that are responsible for exerting toxicity, probably through abnormal interactions with their target(s). Therefore, A assemblies having distinct surface tertiary structures should cause neurotoxicity through distinct mechanisms. Aiming to clarify the molecular basis of neuronal loss, which is a central phenotype in neurodegenerative diseases such as AD, we report here the selective immunoisolation of neurotoxic 10 -15-nm spherical A assemblies termed native amylospheroids (native ASPDs) from AD and dementia with Lewy bodies brains, using ASPD tertiary structure-dependent antibodies. In AD patients, the amount of native ASPDs was correlated with the pathologic severity of disease. Native ASPDs are anti-pan oligomer A11 antibody-negative, high mass (>100 kDa) assemblies that induce degeneration particularly of mature neurons, including those of human origin, in vitro. Importantly, their immunospecificity strongly suggests that native ASPDs have a distinct surface tertiary structure from other reported assemblies such as dimers, A-derived diffusible ligands, and A11-positive assemblies. Only ASPD tertiary structure-dependent antibodies could block ASPD-induced neurodegeneration. ASPDs bind presynaptic target(s) on mature neurons and have a mode of toxicity different from those of other assemblies, which have been reported to exert their toxicity through binding postsynaptic targets and probably perturbing glutamatergic synaptic transmission. Thus, our findings indicate that native ASPDs with a distinct toxic surface induce neuronal loss through a different mechanism from other A assemblies.Neurodegenerative diseases, such as Alzheimer disease (AD), 2 Parkinson disease, prion diseases, and the polyglutamine diseases, arise from abnormal protein interactions in the central nervous system (1). In these diseases, complex multistep processes of protein conformational change and accretion produce various nonfibrillar assemblies, leading finally to fibrils (1-5). Recent studies have suggested that the early assemblies in this process might be the most toxic, possibly through the exposure of buried moieties and the formation of surface tertiary structures not present in physiologic monomers (6). These surface tertiary structures could mediate abnormal interactions with other cellular components (1).In AD, extensive studies have suggested that accumulation of amyloid -protein (A), a physiologic derivative of amyloid precursor protein (APP), plays a primary pathogenic role (7-9). Various forms of assemblies ranging in mass from dimers up to multimers of ϳ1 MDa have been reported as neurotoxins (10 -13) as follows: protofibrils (14); dimers/trimers (natural low-n oligomers) (15); 3-24-mer A-(1-42) assemblies termed A-derived diffusible ligands (ADDLs) (16); 12-mers termed globulomers (17) or A*56 (18); 15-20-mer A assemblies te...
Metformin, an old antidiabetes drug, may inhibit prostate intraepithelial neoplasia transforming to cancer lesion via reducing c-MYC, an 'old' overexpressed oncogene. This study explores chemopreventive efficacy of metformin in prostate cancer and its link to cMYC in vitro and in vivo.
Nonfibrillar assemblies of amyloid -protein (A) are considered to play primary roles in Alzheimer disease (AD). Elucidating the assembly pathways of these specific aggregates is essential for understanding disease pathogenesis and developing knowledge-based therapies. However, these assemblies cannot be monitored in vivo, and there has been no reliable in vitro monitoring method at low protein concentration. We have developed a highly sensitive in vitro monitoring method using fluorescence correlation spectroscopy (FCS) combined with transmission electron microscopy (TEM) and toxicity assays. Using A labeled at the N terminus or Lys 16 , we uncovered two distinct assembly pathways. One leads to highly toxic 10 -15-nm spherical A assemblies, termed amylospheroids (ASPDs). The other leads to fibrils. The first step in ASPD formation is trimerization. ASPDs of ϳ330 kDa in mass form from these trimers after 5 h of slow rotation. Up to at least 24 h, ASPDs remain the dominant structures in assembly reactions. Neurotoxicity studies reveal that the most toxic ASPDs are ϳ128 kDa (ϳ32-mers). In contrast, fibrillogenesis begins with dimer formation and then proceeds to formation of 15-40-nm spherical intermediates, from which fibrils originate after 15 h. Unlike ASPD formation, the Lys 16 -labeled peptide disturbed fibril formation because the A 16 -20 region is critical for this final step. These differences in the assembly pathways clearly indicated that ASPDs are not fibril precursors. The method we have developed should facilitate identifying A assembly steps at which inhibition may be beneficial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.