We used the chicken embryo at the internal pipping phase (just after the onset of pulmonary ventilation) as a model to quantify the changes in heart rate (fH), breathing frequency (fB) and their variabilities (heart rate variability and breathing rate variability) during air breathing (21% O 2) and successive 20-min periods of 15%, 10% and 5% O 2 and posthypoxic recovery. For each condition, and for both fH and fB, variability was quantified by time-domain analysis with five standard criteria; these produced qualitatively similar results, which were combined into a single variability index. In normoxia, breathing rate variability was about five times higher than heart rate variability. With 10% O 2 , the embryo's oxygen consumption ( V O 2) and breathing rate variability decreased while heart rate variability increased. In normoxia, respiratory sinus arrhythmia was recognisable in a minority of embryos; its average value was low (~2%) and decreased further with hypoxia. With very severe hypoxia (5% O 2), in some cases, breathing stopped; when it did not, breathing rate variability was high. Within the 20-min post-hypoxia, all embryos recovered, and almost all parameters (fH, heart rate variability, fB, respiratory sinus arrhythmia and V O 2) were at the pre-hypoxic values; only breathing rate variability remained low. The possibility of simultaneous measurements of fB and fH makes the avian embryo, close to hatching, a suitable model for the investigations of heart rate variability and breathing rate variability in response to hypoxia during the transition from prenatal to postnatal life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.