The basal ganglia play key roles in adaptive behaviors guided by reward and punishment. However, despite accumulating knowledge, few studies have tested how heterogeneous signals in the basal ganglia are organized and coordinated for goal-directed behavior. In this study, we investigated neuronal signals of the direct and indirect pathways of the basal ganglia as rats performed a lever push/pull task for a probabilistic reward. In the dorsomedial striatum, we found that optogenetically and electrophysiologically identified direct pathway neurons encoded reward outcomes, whereas indirect pathway neurons encoded no-reward outcome and next-action selection. Outcome coding occurred in association with the chosen action. In support of pathway-specific neuronal coding, light activation induced a bias on repeat selection of the same action in the direct pathway, but on switch selection in the indirect pathway. Our data reveal the mechanisms underlying monitoring and updating of action selection for goal-directed behavior through basal ganglia circuits.
The internal segment of the globus pallidus (GPi) receives motor-related cortical signals mainly through the striatum, the external segment of the globus pallidus (GPe) and the subthalamic nucleus (STN). The GPi sends its outputs outside the basal ganglia and plays a key role in motor control. Extracellular unit recordings were performed in awake monkeys to explore how glutamatergic STN inputs and GABAergic striatal and GPe inputs control spontaneous activity and how these inputs contribute to motor cortex stimulation-induced responses of GPi neurons. The typical responses of GPi neurons to cortical stimulation consisted of an early excitation, an inhibition and a late excitation. Local applications of the NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid and/or the AMPA/kainate receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulphonamide in the vicinity of recorded GPi neurons reduced the firing rate, and abolished or attenuated both early and late excitations following cortical stimulation. Local application of the GABA(A) receptor antagonist gabazine increased the firing rate, induced oscillatory firings and diminished the cortically induced inhibition. Muscimol or gabazine injection into the STN or GPe also altered the firing rate, and attenuated the late excitation of GPi neurons. The gabazine injection into the STN occasionally induced dyskinesia with significantly decreased GPi activity. These data suggest that the early and late excitations are glutamatergic and induced by the cortico-STN-GPi and cortico-striato-GPe-STN-GPi pathways, respectively. The inhibition is GABAergic and induced by the cortico-striato-GPi pathway. In addition, these inputs are the main factors governing the spontaneous activity of GPi neurons.
Deep brain stimulation (DBS), applying high-frequency electrical stimulation to deep brain structures, has now provided an effective therapeutic option for treatment of various neurological and psychiatric disorders. DBS targeting the internal segment of the globus pallidus, subthalamic nucleus, and thalamus is used to treat symptoms of movement disorders, such as Parkinson’s disease, dystonia, and tremor. However, the mechanism underlying the beneficial effects of DBS remains poorly understood and is still under debate: Does DBS inhibit or excite local neuronal elements? In this short review, we would like to introduce our recent work on the physiological mechanism of DBS and propose an alternative explanation: DBS dissociates input and output signals, resulting in the disruption of abnormal information flow through the stimulation site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.