To elucidate the mechanisms of severe itch in atopic dermatitis, we investigated the role of leukotriene B(4) , a potent itch mediator, in spontaneous itch-related behaviour in NC mice with atopic dermatitis-like skin lesions. Topical application of the BLT leukotriene B(4) receptor antagonist ONO-4057 inhibited spontaneous itch-related behaviour. The concentration of leukotriene B(4) was significantly increased in the lesional skin. The expression levels of 5-lipoxygenase were also elevated in the lesional skin, yet present throughout the epidermis of both healthy and lesional skin. These results suggest a role for leukotriene B(4) in chronic dermatitis-related itch. Sphingosylphosphorylcholine (SPC) was increased in the epidermis of the lesional skin. Moreover, intradermal injection of SPC elicited itch-related behaviours in healthy mice. Because SPC induces itch-related responses through the production of leukotriene B(4) in keratinocytes (J Invest Dermatol, 129, 2009, 2854), these results suggest that an increase in SPC induces leukotriene B(4) -mediated itching in chronic dermatitis. BLT1 receptor and 5-lipoxygenase in the skin may be effective pharmacological targets for the treatment of itch in atopic dermatitis.
To investigate the mechanisms underlying itching in atopic dermatitis, we examined whether thromboxane (TX) A2, an arachidonic acid metabolite, is involved in spontaneous scratching, an itch-related response, in NC mice with atopic dermatitis-like skin lesions. The TXA2 receptor (TP) antagonist ONO-3708 inhibited the spontaneous scratching. The mRNA expression of TX synthase (TXSyn) distributed mainly in epidermis and the concentration of TXB2, a metabolite of TXA2, were increased in lesional skin. Scratching caused by the PAR2 agonist SLIGRL-NH2 was suppressed by ONO-3708. SLIGRL-NH2-induced scratching decreased approximately 75% in TP-deficient mice, compared to wild-type mice. In primary cultures of mouse keratinocytes, SLIGRL-NH2 induced the production of TXA2, as evidenced by the increased TXB2, which was inhibited by the TXSyn inhibitor sodium ozagrel and a PAR2-neutralizing antibody. Taken together, these results suggest that epidermal TXA2, which may be produced via PAR2 activation, is involved in itching in atopic dermatitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.