The purposes of this study are to establish oxygen extraction fraction (OEF) measurements using quantitative susceptibility mapping (QSM) of magnetic resonance imaging (MRI), and to compare QSM-OEF data with the gold standard (15)O positron emission tomography (PET). Twenty-six patients with chronic unilateral internal carotid artery or middle cerebral artery stenosis or occlusion, and 15 normal subjects were included. MRI scans were conducted using a 3.0 Tesla scanner with a three-dimensional spoiled gradient recalled sequence. QSM images were created using the morphology-enabled dipole inversion method, and OEF maps were generated from QSM images using extraction of venous susceptibility induced by deoxygenated hemoglobin. Significant correlation of relative OEF ratio to contra-lateral hemisphere between QSM-OEF and PET-OEF was observed (r = 0.62, p < 0.001). The local (intra-section) correlation was also significant (r = 0.52, p < 0.001) in patients with increased PET-OEF. The sensitivity and specificity of OEF increase in QSM was 0.63 (5/8) and 0.89 (16/18), respectively, in comparison with PET. In conclusion, good correlation was achieved between QSM-OEF and PET-OEF in the identification of elevated OEF in affected hemispheres of patients with unilateral chronic steno-occlusive disease.
Purpose:The feasibility of steady-state sequences for 17O imaging was evaluated based on a kinetic analysis of the brain parenchyma and cerebrospinal fluid (CSF).Materials and Methods:The institutional review board approved this prospective study with written informed consent. Dynamic 2D or 3D steady-state sequences were performed in five and nine participants, respectively, with different parameters using a 3T scanner. During two consecutive dynamic scans, saline was intravenously administered for control purposes in the first scan, and 20% 17O-labeled water (1 mL/Kg) was administered in the second scan. Signal changes relative to the baseline were calculated, and kinetic analyses of the curves were conducted for all voxels. Region of interest analysis was performed in the brain parenchyma, choroid plexus, and CSF spaces.Results:Average signal drops were significantly larger in the 17O group than in the controls for most of the imaging parameters. Different kinetic parameters were observed between the brain parenchyma and CSF spaces. Average and maximum signal drops were significantly larger in the CSF spaces and choroid plexus than in the brain parenchyma. Bolus arrival, time to peak, and the first moment of dynamic curves of 17O in the CSF space were delayed compared to that in the brain parenchyma. Significant differences between the ventricle and subarachnoid space were also noted.Conclusion:Steady-state sequences are feasible for indirect 17O imaging with reasonable temporal resolution; this result is potentially important for the analysis of water kinetics and aquaporin function for several disorders.
Functional MRI was used to test predictions from a theory of the origin of human language. The gradual theory suggests that human language and tool-use skills have a similar hierarchical structure, and proposes that tool-manipulation skills are related to the origin and evolution of human language. Our results show an overlap of brain activity for perceiving language and using tools in Broca's area. The location of this overlap suggests that language and tool use share computational principles for processing complex hierarchical structures common to these two abilities. The involvement of monkeys' homologous region during tool use suggests that neural processes for computation of complex hierarchical structures exist in primates without language, and could have been exapted to support human grammatical ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.