There have been several recent attempts to generate, de novo, a functional whole kidney from stem cells using the organogenic niche or blastocyst complementation methods. However, none of these attempts succeeded in constructing a urinary excretion pathway for the stem cell-generated embryonic kidney. First, we transplanted metanephroi from cloned pig fetuses into gilts; the metanephroi grew to about 3 cm and produced urine, although hydronephrosis eventually was observed because of the lack of an excretion pathway. Second, we demonstrated the construction of urine excretion pathways in rats. Rat metanephroi or metanephroi with bladders (developed from cloacas) were transplanted into host rats. Histopathologic analysis showed that tubular lumina dilation and interstitial fibrosis were reduced in kidneys developed from cloacal transplants compared with metanephroi transplantation. Then we connected the host animal's ureter to the cloacaldeveloped bladder, a technique we called the "stepwise peristaltic ureter" (SWPU) system. The application of the SWPU system avoided hydronephrosis and permitted the cloacas to differentiate well, with cloacal urine being excreted persistently through the recipient ureter. Finally, we demonstrated a viable preclinical application of the SWPU system in cloned pigs. The SWPU system also inhibited hydronephrosis in the pig study. To our knowledge, this is the first report showing that the SWPU system may resolve two important problems in the generation of kidneys from stem cells: construction of a urine excretion pathway and continued growth of the newly generated kidney.cloned pig | kidney generation | metanephros | somatic cell nuclear transfer | transplantation
In human and dogs, bladder cancer (BC) is the most common neoplasm affecting the urinary tract. Dog BC resembles human muscle‐invasive BC in histopathological characteristics and gene expression profiles, and could be an important research model for this disease. Cancer patient‐derived organoid culture can recapitulate organ structures and maintains the gene expression profiles of original tumor tissues. In a previous study, we generated dog prostate cancer organoids using urine samples, however dog BC organoids had never been produced. Therefore we aimed to generate dog BC organoids using urine samples and check their histopathological characteristics, drug sensitivity, and gene expression profiles. Organoids from individual BC dogs were successfully generated, expressed urothelial cell markers (CK7, CK20, and UPK3A) and exhibited tumorigenesis in vivo. In a cell viability assay, the response to combined treatment with a range of anticancer drugs (cisplatin, vinblastine, gemcitabine or piroxicam) was markedly different in each BC organoid. In RNA‐sequencing analysis, expression levels of basal cell markers (CK5 and DSG3) and several novel genes (MMP28, CTSE, CNN3, TFPI2, COL17A1, and AGPAT4) were upregulated in BC organoids compared with normal bladder tissues or two‐dimensional (2D) BC cell lines. These established dog BC organoids might be a useful tool, not only to determine suitable chemotherapy for BC diseased dogs but also to identify novel biomarkers in human muscle‐invasive BC. In the present study, for the 1st time, dog BC organoids were generated and several specifically upregulated organoid genes were identified. Our data suggest that dog BC organoids might become a new tool to provide fresh insights into both dog BC therapy and diagnostic biomarkers.
Dog spontaneously develop prostate cancer (PC) like humans. Because most dogs with PC have a poor prognosis, they could be used as a translational model for advanced PC in humans. Stem cell‐derived 3‐D organoid culture could recapitulate organ structures and physiology. Using patient tissues, a human PC organoid culture system was established. Recent study has shown that urine cells also possess the characteristic of stem cells. However, urine cell‐derived PC organoids have never been produced. Therefore, we generated PC organoids using the dog urine samples. Urine organoids were successfully generated from each dog with PC. Each organoid showed cystic structures and resembled the epithelial structures of original tissues. Expression of an epithelial cell marker, E‐cadherin, and a myofibloblast marker, α‐SMA, was observed in the urine organoids. The organoids also expressed a basal cell marker, CK5, and a luminal cell marker, CK8. CD49f‐sorted basal cell organoids rapidly grew compared with CD24‐sorted luminal cell organoids. The population of CD44‐positive cells was the highest in both organoids and the original urine cells. Tumors were successfully formed with the injection of the organoids into immunodeficient mice. Treatment with a microtubule inhibitor, docetaxel, but not a cyclooxygenase inhibitor, piroxicam, and an mTOR inhibitor, rapamycin, decreased the cell viability of organoids. Treatment with a Hedgehog signal inhibitor, GANT61, increased the radiosensitivity in the organoids. These findings revealed that PC organoids using urine might become a useful tool for investigating the mechanisms of the pathogenesis and treatment of PC in dogs.
Recent findings have demonstrated that stem cells can differentiate into mature tissue when supplied with a niche containing factors identical to those in the normal developmental program. A niche for the development of an organ can be provided by xenotransplantation of a similar developing organ. However, this process has many technical, safety, and ethical concerns. Here, we established xenotransplantation models that control endogenous mesenchymal stem cell (MSC) differentiation into mature erythropoietin (EPO)-producing tissue in a niche provided by a developing xenometanephros. Transplantation of rat metanephroi into mouse omentum, and similarly pig metanephroi into cat omentum, led to the recruitment of host cells and EPO production. EPO-expressing cells were not differentiated from integrating vessels because they did not coexpress endothelial markers (Tie-2 and VE-cadherin). Instead, EPOexpressing cells were shown to be derived from circulating host cells, as shown by enhanced green fluorescent protein (EGFP) expression in the grown transplants of chimeric mice bearing bone marrow from a transgenic mouse expressing EGFP under the control of the EPO promoter. These results suggest that donor cell recruitment and differentiation in a xenotransplanted developing organ may be consistent between species. The cells responsible for EPO expression were identified as MSCs by injecting human bone marrow-derived MSCs and endothelial progenitor cells into NOD/SCID mice. Furthermore, using metanephroi from transgenic ER-E2F1 suicide-inducible mice, the xenotissue component could be eliminated, leaving autologous EPO-producing tissue. Our findings may alleviate adverse effects due to long-lasting immunosuppression and help mitigate ethical concerns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.