Vegetable soybean (Glycine max [L.]) is mainly consumed in Asian countries, but has recently attracted attention worldwide due to its high nutritional value. We aimed to identify the indigenous rhizobia of vegetable soybean in Yao City, Osaka Prefecture, Japan, and to clarify the relationships between the rhizobial community and soil environmental factors. Soil samples were collected from 12 vegetable soybean cultivation fields under two different conditions (six greenhouses and six open fields) in Yao City with different varieties of vegetable soybean. A total of 217 isolates were obtained from the nodules and clustered into nine operational taxonomic units (OTUs) with 97% homology based on the 16S-23S rRNA internal transcribed spacer (ITS) region. A phylogenetic analysis showed that OTUs were closely related to Bradyrhizobium liaoningense, B. ottawaense, B. elkanii, and other Bradyrhizobium species and were dominant in this order. B. liaoningense was widely found in sampled sites and accounted for 50.7% of all isolates, while B. ottawaense was mostly limited to open fields. This rhizobial community differed from Japanese soybean rhizobia, in which B. diazoefficiens, B. japonicum, and B. elkanii were dominant. These results imply the characteristic differences among host plants or regional specialties. A non-metric multidimensional scaling (NMDS) analysis revealed the significant impact of soil pH and the contents of Ca, Mg, Mn, total nitrogen (TN), and total carbon (TC) on the distribution of rhizobia. B. liaoningense was detected in soils with a neutral pH, and high TN and low Mn contents increased its abundance. The present study provides novel insights into Japanese rhizobia and potentially novel resources for sustainable agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.