CD155 was initially identified as a receptor for poliovirus. Several studies have demonstrated that CD155 overexpression in cancer cells is significant in their migration, invasion, proliferation and metastasis. The objective of the present study was to investigate the correlation between CD155 expression and the clinical aggressiveness of soft tissue tumors. The CD155 expression levels in 43 surgically-resected soft tissue tumors were evaluated using the quantitative real-time polymerase chain reaction (PCR). The clinicopathogical factors affecting the expression levels of CD155 mRNA were investigated and the association between the expression levels of CD155 and patient prognosis was identified. The CD155 expression level was not correlated with the patient gender, site of the primary tumor, tumor depth, tumor size or presence of distant metastasis at presentation, but was correlated with patient age (Fisher’s exact test). The local recurrence-free survival rate for patients with a high CD155 expression level was observed to be significantly poorer compared with that of patients with low CD155 expression levels (P=0.0401). Moreover, a multivariate analysis indicated that a high CD155 expression level was an independent adverse prognostic factor for local recurrence-free survival (hazard ratio, 6.369; P=0.0328). The present study therefore suggests that the expression level of CD155 is a useful marker for predicting the local recurrence of soft tissue tumors.
The poliovirus receptor CD155, is essential for poliovirus to infect and induce death in neural cells. Recently, CD155 has been shown to be selectively expressed on certain types of tumor cells originating from the neural crest, including malignant glioma and neuroblastoma. However, the expression pattern of CD155 in soft tissue sarcoma has not been examined. Therefore, we first examined CD155 expression in sarcoma cell lines, and found the expression of both CD155 mRNA and protein in 12 soft and bone tissue sarcoma cell lines. Furthermore, we examined the effect of live attenuated poliovirus (LAPV) on 6 bone and soft tissue sarcoma cell lines in vitro, and found that LAPV induced apoptosis by activating caspases 7 and 3 in all of these cell lines. Furthermore, in BALB/c nu/nu mice xenotransplanted with HT1080 fibrosarcoma cells, administration of live attenuated poliovirus caused growth suppression of the tumors. These results suggest that oncolytic therapy using a LAPV may represent a new option for the treatment of bone and soft tissue sarcomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.