Bone fractures create five problems that must be resolved: bleeding, risk of infection, hypoxia, disproportionate strain, and inability to bear weight. There have been enormous advancements in our understanding of the molecular mechanisms that resolve these problems after fractures, and in best clinical practices of repairing fractures. We put forth a modern, comprehensive model of fracture repair that synthesizes the literature on the biology and biomechanics of fracture repair to address the primary problems of fractures. This updated model is a framework for both fracture management and future studies aimed at understanding and treating this complex process. This model is based upon the fracture acute phase response (APR), which encompasses the molecular mechanisms that respond to injury. The APR is divided into sequential stages of “survival” and “repair.” Early in convalescence, during “survival,” bleeding and infection are resolved by collaborative efforts of the hemostatic and inflammatory pathways. Later, in “repair,” avascular and biomechanically insufficient bone is replaced by a variable combination of intramembranous and endochondral ossification. Progression to repair cannot occur until survival has been ensured. A disproportionate APR—either insufficient or exuberant—leads to complications of survival (hemorrhage, thrombosis, systemic inflammatory response syndrome, infection, death) and/or repair (delayed- or non-union). The type of ossification utilized for fracture repair is dependent on the relative amounts of strain and vascularity in the fracture microenvironment, but any failure along this process can disrupt or delay fracture healing and result in a similar non-union. Therefore, incomplete understanding of the principles herein can result in mismanagement of fracture care or application of hardware that interferes with fracture repair. This unifying model of fracture repair not only informs clinicians how their interventions fit within the framework of normal biological healing but also instructs investigators about the critical variables and outputs to assess during a study of fracture repair.
Osteomyelitis remains one of the most challenging disorders for orthopedic doctors despite the advancement of therapeutic techniques. The purpose of this study was to investigate the feasibility of local antibiotic administration using hydroxyapatite/collagen (HAp/Col) as a drug delivery system. We hypothesized that higher adsorbability of antibiotics onto HAp/Col will result in more efficacious activity and therefore, treatment of osteomyelitis. Eight antibiotics were examined in this study: amikacin, cefazolin, cefotiam, daptomycin, minocycline, piperacillin, teicoplanin, and vancomycin. Aligning with their adsorbability onto HAp/Col, minocycline, teicoplanin, and vancomycin showed antibacterial effects up to 14 days after subcutaneous implantation in Wistar rats; while antibiotics with reduced adsorbability (cefazolin, cefotiam, piperacillin) had diminished antibacterial effects. Furthermore, when implanted into a rat femur, vancomycin levels from the Hap/Col were detected in the medullary space above the minimum inhibitory concentration for Staphylococcus aureus for 7 days, while cefazolin levels were undetectable. Aligning with these results, implantation of Hap/Col impregnated with vancomycin to the femur in an acute osteomyelitis rat model had a greater therapeutic effect than cefazolin, as measured by the number of bacteria, the extent of bone destruction, and bone regeneration. These results indicated that the adsorbability of antibiotics onto their carrier is important when locally administered and that HAp/Col scaffolds might be a useful antibiotic delivery system for osteomyelitis. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 38:843‐851, 2020
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.