Herein, we report a method for in vitro selection of multivalent glycopeptides, combining mRNA display with incorporation of unnatural amino acids and “click” chemistry. We have demonstrated the use of this method to design potential glycopeptide vaccines against HIV. From libraries of ∼1013 glycopeptides containing multiple Man9 glycan(s), we selected variants that bind to HIV broadly neutralizing antibody 2G12 with picomolar to low nanomolar affinity. This is comparable to the strength of the natural 2G12–gp120 interaction, and is the strongest affinity achieved to date with constructs containing 3–5 glycans. These glycopeptides are therefore of great interest in HIV vaccine design.
Although efforts to develop a vaccine against HIV have so far met with little success, recent studies of HIV-positive patients with strongly neutralizing sera have shown that the human immune system is capable of producing potent and broadly-neutralizing antibodies (bnAbs), some of which neutralize up to 90 % of HIV strains. These antibodies bind to conserved vulnerable sites on the viral envelope glycoprotein gp120, and identification of these sites has provided tantalizing clues about the design of potentially effective vaccines. Carbohydrates play a key role in this field, as a large fraction of bnAbs bind to carbohydrates or combinations of carbohydrate and peptide elements on gp120. Additionally, carbohydrates partially mask some peptide surfaces recognized by bnAbs. The use of engineered glycoproteins and other glycostructures as vaccines to elicit antibodies with broad neutralizing activity is therefore a key area of interest in HIV vaccine design.
Up to ∼20% of HIV-infected individuals eventually develop broadly neutralizing antibodies (bnAbs), and many of these antibodies (∼40%) target a region of dense high-mannose glycosylation on gp120 of the HIV envelope protein, known as the “high-mannose patch” (HMP). Thus, there have been numerous attempts to develop glycoconjugate vaccine immunogens that structurally mimic the HMP and might elicit bnAbs targeting this conserved neutralization epitope. Herein, we report on the immunogenicity of glycopeptides, designed by in vitro selection, that bind tightly to anti-HMP antibody 2G12. By analyzing the fine carbohydrate specificity of rabbit antibodies elicited by these immunogens, we found that they differ from some natural human bnAbs, such as 2G12 and PGT128, in that they bind primarily to the core structures within the glycan, rather than to the Manα1 → 2Man termini (2G12) or to the whole glycan (PGT128). Antibody specificity for the glycan core may result from extensive serum mannosidase trimming of the immunogen in the vaccinated animals. This finding has broad implications for vaccine design aiming to target glycan-dependent HIV neutralizing antibodies.
The arginine-rich domains of several RNA-binding proteins have been shown to bind their cognate RNAs with high affinities and specificities as isolated peptides, adopting different conformations within different complexes. The sequence simplicity and structural diversity of the arginine-rich motif has made it a good framework for constructing combinatorial libraries and identifying novel RNA-binding peptides, including those targeted to the HIV Rev response element (RRE). Here we describe a modified transcription antitermination reporter assay engineered with kanamycin resistance that enables larger in vivo screens (∼ 10 9 sequences) than previously possible. We show that the assay detects only specific RNA-protein complexes, and that binders are enriched at least 300-fold per round of selection. We screened a large peptide library in which amino acids with charged, polar, and small side chains were randomly distributed within a polyarginine framework and identified a set of high affinity RRE-binding peptides. Most contain glutamine at one particular peptide position, and the best peptides display significantly higher antitermination activities than Rev or other previously described high-affinity RRE-binding peptides. The kanamycin antitermination (KAN) assay should be useful for screening relatively large libraries and thereby facilitate identification of novel RNA binders.
The high affinity and specificity of nucleic acid base complementarity has been proven to be a powerful method for constructing specific molecular assemblies. On the other hand, recent structural studies of RNA have revealed the wide range of tertiary interactions utilized in RNA folding, which may potentially be used as tools for the design of specific macromolecular assemblies. Here, RNA building blocks containing two hairpin loops, based on the dimerization initiation site (DIS) of HIV RNA, connected by a short linker were used to construct large RNA assemblies through hairpin loop-loop ("kissing") interactions. We show that specific linear and circular assemblies can be constructed in a magnesium-dependent manner using several non-self-complementary loop-loop interactions designed in this study. These results show that the use of RNA tertiary interactions may broaden the repertoire of nucleic acid-based nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.