Neuronal synapse formation and remodeling is essential to central nervous system (CNS) development and is dysfunctional in neurodevelopmental diseases. Innate immune signals regulate tissue remodeling in the periphery, but how this impacts CNS synapses is largely unknown. Here we show that the IL-1 family cytokine Interleukin-33 (IL-33) is produced by developing astrocytes and is developmentally required for normal synapse numbers and neural circuit function in the spinal cord and thalamus. We find that IL-33 signals primarily to microglia under physiologic conditions, that it promotes microglial synapse engulfment, and that it can drive microglial-dependent synapse depletion in vivo. These data reveal a cytokine-mediated mechanism required to maintain synapse homeostasis during CNS development.
The R47H variant of the microglia gene TREM2 has been linked to a significantly higher risk of Alzheimer’s disease. In this study, Song et al. generate human TREM2-expressing mice and demonstrate that R47H leads to a decreased microglia number and activation as well as a decreased presence of soluble TREM2 on neurons and plaques in a mouse model of Alzheimer’s disease.
For the identification of susceptibility loci for primary biliary cirrhosis (PBC), a genome-wide association study (GWAS) was performed in 963 Japanese individuals (487 PBC cases and 476 healthy controls) and in a subsequent replication study that included 1,402 other Japanese individuals (787 cases and 615 controls). In addition to the most significant susceptibility region, human leukocyte antigen (HLA), we identified two significant susceptibility loci, TNFSF15 (rs4979462) and POU2AF1 (rs4938534) (combined odds ratio [OR] = 1.56, p = 2.84 × 10(-14) for rs4979462, and combined OR = 1.39, p = 2.38 × 10(-8) for rs4938534). Among 21 non-HLA susceptibility loci for PBC identified in GWASs of individuals of European descent, three loci (IL7R, IKZF3, and CD80) showed significant associations (combined p = 3.66 × 10(-8), 3.66 × 10(-9), and 3.04 × 10(-9), respectively) and STAT4 and NFKB1 loci showed suggestive association with PBC (combined p = 1.11 × 10(-6) and 1.42 × 10(-7), respectively) in the Japanese population. These observations indicated the existence of ethnic differences in genetic susceptibility loci to PBC and the importance of TNF signaling and B cell differentiation for the development of PBC in individuals of European descent and Japanese individuals.
Current human leukocyte antigen (HLA) DNA typing methods such as the sequence-based typing (SBT) and sequence-specific oligonucleotide (SSO) methods generally yield ambiguous typing results because of oligonucleotide probe design limitations or phase ambiguity for HLA allele assignment. Here we describe the development and application of the super high-resolution single-molecule sequence-based typing (SS-SBT) of HLA loci at the 8-digit level using next generation sequencing (NGS). NGS which can determine an HLA allele sequence derived from a single DNA molecule is expected to solve the phase ambiguity problem. Eight classical HLA loci-specific polymerase chain reaction (PCR) primers were designed to amplify the entire gene sequences from the enhancer-promoter region to the 3' untranslated region. Phase ambiguities of HLA-A, -B, -C, -DRB1 and -DQB1 were completely resolved and unequivocally assigned without ambiguity to single HLA alleles. Therefore, the SS-SBT method described here is a superior and effective HLA DNA typing method to efficiently detect new HLA alleles and null alleles without ambiguity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.