The role of hypocretin (orexin; hcrt/orx) neurons in regulation of arousal is well established. Recently, hcrt/orx has been implicated in food reward and drug-seeking behavior. We report here that in male rats, Fos immunoreactivity (ir) in hcrt/orx neurons increases markedly during copulation, whereas castration produces decreases in hcrt/orx neuron cell counts and protein levels in a time course consistent with postcastration impairments in copulatory behavior. This effect was reversed by estradiol replacement. Immunolabeling for androgen (AR) and estrogen (ER␣) receptors revealed no colocalization of hcrt/orx with AR and few hcrt/orx neurons expressing ER␣, suggesting that hormonal regulation of hcrt/orx expression is via afferents from neurons containing those receptors. We also demonstrate that systemic administration of the orexin-1 receptor antagonist SB 334867 [N-(2-methyl-6-benzoxazolyl)-NЉ-1,5-naphthyridin-4-yl urea] impairs copulatory behavior. One locus for the prosexual effects of hcrt/orx may be the ventral tegmental area (VTA). We show here that hcrt-1/orx-A produces dose-dependent increases in firing rate and population activity of VTA dopamine (DA) neurons in vivo. Activation of hcrt/orx during copulation, and in turn, excitation of VTA DA neurons by hcrt/orx, may contribute to the robust increases in nucleus accumbens DA previously observed during male sexual behavior. Subsequent triple immunolabeling in anterior VTA showed that Fos-ir in tyrosine hydroxylase-positive neurons apposed to hcrt/orx fibers increases during copulation. Together, these data support the view that hcrt/orx peptides may act in a steroid-sensitive manner to facilitate the energized pursuit of natural rewards like sex via activation of the mesolimbic DA system.
Adolescence is associated with increases in pleasure-seeking behaviors, which, in turn, are shaped by the pubertal activation of the hypothalamo-pituitary-gonadal axis. In animal models of naturally rewarding behaviors, such as sex, testicular androgens contribute to the development and expression of the behavior in males. To effect behavioral maturation, the brain undergoes significant remodeling during adolescence, and many of the changes are likewise sensitive to androgens, presumably acting through androgen receptors (AR). Given the delicate interaction of gonadal hormones and brain development, it is no surprise that disruption of hormone levels during this sensitive period significantly alters adolescent and adult behaviors. In male hamsters, exposure to testosterone during adolescence is required for normal expression of adult sexual behavior. Males deprived of androgens during puberty display sustained deficits in mating. Conversely, androgens alone are not sufficient to induce mating in prepubertal males, even though brain AR are present before puberty. In this context, wide-spread use of anabolic-androgenic steroids (AAS) during adolescence is a significant concern. AAS abuse has the potential to alter both the timing and the levels of androgens in adolescent males. In hamsters, adolescent AAS exposure increases aggression, and causes lasting changes in neurotransmitter systems. In addition, AAS are themselves reinforcing, as demonstrated by self-administration of testosterone and other AAS. However, recent evidence suggests that the reinforcing effects of androgens may not require classical AR. Therefore, further examination of interactions between androgens and rewarding behaviors in the adolescent brain is required for a better understanding of AAS abuse.
Status epilepticus (SE) is a common neurological emergency for which new treatments are needed. In vitro studies suggest a novel approach to controlling seizures in SE: acute inhibition of estrogen synthesis in the brain. Here, we show in rats that systemic administration of an aromatase (estrogen synthase) inhibitor after seizure onset strongly suppresses both electrographic and behavioral seizures induced by kainic acid (KA). We found that KA-induced SE stimulates synthesis of estradiol (E2) in the hippocampus, a brain region commonly involved in seizures and where E2 is known to acutely promote neural activity. Hippocampal E2 levels were higher in rats experiencing more severe seizures. Consistent with a seizure-promoting effect of hippocampal estrogen synthesis, intra-hippocampal aromatase inhibition also suppressed seizures. These results reveal neurosteroid estrogen synthesis as a previously unknown factor in the escalation of seizures and suggest that acute administration of aromatase inhibitors may be an effective treatment for SE.DOI: http://dx.doi.org/10.7554/eLife.12917.001
In vitro studies show that estrogens acutely modulate synaptic function in both sexes. These acute effects may be mediated in vivo by estrogens synthesized within the brain, which could fluctuate more rapidly than circulating estrogens. For this to be the case, brain regions that respond acutely to estrogens should be capable of synthesizing them. To investigate this question, we used quantitative real-time PCR to measure expression of mRNA for the estrogen-synthesizing enzyme, aromatase, in different brain regions of male and female rats. Importantly, because brain aromatase exists in two forms, a long form with aromatase activity and a short form with unknown function, we targeted a sequence found exclusively in long-form aromatase. With this approach, we found highest expression of aromatase mRNA in the amygdala followed closely by the bed nucleus of the stria terminalis (BNST) and preoptic area (POA); we found moderate levels of aromatase mRNA in the dorsal hippocampus and cingulate cortex; and aromatase mRNA was detectable in brainstem and cerebellum, but levels were very low. In the amygdala, gonadal/hormonal status regulated aromatase expression in both sexes; in the BNST and POA, castration of males down-regulated aromatase, whereas there was no effect of estradiol in ovariectomized females. In the dorsal hippocampus and cingulate cortex, there were no differences in aromatase levels between males and females or effects of gonadal/hormonal status. These findings demonstrate that long-form aromatase is expressed in brain regions that respond acutely to estrogens, such as the dorsal hippocampus, and that gonadal/hormonal regulation of aromatase differs among different brain regions.
Summary Anabolic androgenic steroid (AAS) abuse is widespread. Moreover, AAS are reinforcing, as shown by self-administration in rodents. However, the receptors that transduce the reinforcing effects of AAS are unclear. AAS may bind to classical nuclear androgen receptors (AR) or membrane receptors. We used two approaches to examine the role of nuclear ARs in AAS self-administration. First, we tested androgen self-administration in rats with the testicular feminization mutation (Tfm), which interferes with androgen binding. If nuclear ARs are essential for AAS self-administration, Tfm males should not self-administer androgens. Tfm males and wild-type (WT) littermates self-administered the non-aromatizable androgen dihydrotestosterone (DHT) or vehicle intracerebroventricularly (ICV) at fixed ratio (FR) schedules up to FR5. Both Tfm and WT rats acquired a preference for the active nose-poke during DHT self-administration (66.4±9.6 responses/4h for Tfm and 79.2±11.5 for WT responses/4h), and nose-pokes increased as the FR requirement increased. Preference scores were significantly lower in rats self-administering vehicle (42.3±5.3 responses/4h for Tfm and 19.1±4.0 responses/4h for WT). We also tested self-administration of DHT conjugated to bovine serum albumin (BSA) at C3 and C17, which is limited to actions at the cell surface. Hamsters were allowed to self-administer DHT, BSA and DHT-BSA conjugates for 15 days at FR1. The hamsters showed a significant preference for DHT (18.0±4.1 responses/4h) or DHT-BSA conjugates (10.0±3.7 responses/4h and 21.0±7.2 responses/4h), but not for BSA (2.5±2.4 responses/4h). Taken together, these data demonstrate that nuclear ARs are not required for androgen self-administration. Furthermore, androgen self-administration may be mediated by plasma membrane receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.