We investigate the relationship between M. De's empirical negation in Kripke and Beth Semantics. It turns out empirical negation, as well as co-negation, corresponds to different logics under different semantics. We then establish the relationship between logics related to these negations under unified syntax and semantics based on R. Sylvan's CCω.
We continue the investigation of the first paper where we studied logics with various negations including empirical negation and co-negation. We established how such logics can be treated uniformly with R. Sylvan's CCω as the basis. In this paper we use this result to obtain cut-free labelled sequent calculi for the logics.
We investigate an expansion of positive intuitionistic logic obtained by adding a constant Ω introduced by Lloyd Humberstone. Our main results include a sound and strongly complete axiomatization, some comparisons to other expansions of intuitionistic logic obtained by adding actuality and empirical negation, and an algebraic semantics. We also brie y discuss its connection to classical logic.
Intuitionistic logic formalises the foundational ideas of L.E.J. Brouwer’s mathematical programme of intuitionism. It is one of the earliest non-classical logics, and the difference between classical and intuitionistic logic may be interpreted to lie in the law of the excluded middle, which asserts that either a proposition is true or its negation is true. This principle is deemed unacceptable from the constructive point of view, in whose understanding the law means that there is an effective procedure to determine the truth of all propositions. This understanding of the distinction between the two logics supports the view that negation plays a vital role in the formulation of intuitionistic logic.Nonetheless, the formalisation of negation in intuitionistic logic has not been universally accepted, and many alternative accounts of negation have been proposed. Some seek to weaken or strengthen the negation, and others actively supporting negative inferences that are impossible with it.This thesis follows this tradition and investigates various aspects of negation in intuitionistic logic. Firstly, we look at a problem proposed by H. Ishihara, which asks how effectively one can conserve the deducibility of classical theorems into intuitionistic logic, by assuming atomic classes of non-constructive principles. The classes given in this section improve a previous class given by K. Ishii in two respects: (a) instead of a single class for the law of the excluded middle, two classes are given in terms of weaker principles, allowing a finer analysis and (b) the conservation now extends to a subsystem of intuitionistic logic called Glivenko’s logic. This section also discusses the extension of Ishihara’s problem to minimal logic.Secondly, we study the relationship between two frameworks for weak constructive negation, the approach of D. Vakarelov on one hand and the framework of subminimal negation by A. Colacito, D. de Jongh, and A. L. Vargas on the other hand. We capture a version of Vakarelov’s logic with the semantics of the latter framework, and clarify the relationship between the two semantics. This also provides proof-theoretic insights, which results in the formulation of a cut-free sequent calculus for the aforementioned system.Thirdly, we investigate the ways to unify the formalisations of some logics with contra-intuitionistic inferences. The enquiry concerns paraconsistent logics by R. Sylvan and A. B. Gordienko, as well as the logic of co-negation by G. Priest and of empirical negation by M. De and H. Omori. We take Sylvan’s system as basic, and formulate the frame conditions of the defining axioms of the other systems. The conditions are then used to obtain cut-free labelled sequent calculi for the systems.Finally, we consider L. Humberstone’s actuality operator for intuitionistic logic, which can be seen as the dualisation of a contra-intuitionistic negation. A compete axiomatisation of intuitionistic logic with actuality operator is given, and comparisons are made for some related operators.Abstract prepared by Satoru Niki.E-mail:Satoru.Niki@rub.de
The semantics in ordered abelian groups Scott proposed for Łukasiewicz’s many-valued logic fails to be sound for one direction of one of the rules Scott gave for implication. We show this by a counterexample Urquhart has used to justify that in his own semantics, every formula has to have a least point at which it is valid. While this condition would make Scott’s semantics sound, it would cause a problem with its completeness. The question arises whether one can still amend Scott’s semantics so as to make it both sound and complete or better stick to Urquhart’s semantics anyway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.