Seven male children with autism spectrum disorder (ASD), aged 8–12 years, attending special education classrooms for ASD and disabled children, were assigned to receive touch therapy. Their mothers were instructed to provide gentle touch in the massage style of the International Liddle Kidz Association. The mothers gave massages to their child for 20 min every day over a period of 3 months, followed by no massage for 4 months. To assess the biological effects of such touch therapy, saliva was collected before and 20 min after a single session of massage for 20 min from the children and mothers every 3 weeks during the massage period and every 4 weeks during the non-massage period, when they visited a community meeting room. Salivary oxytocin levels were measured using an enzyme immunoassay kit. During the period of massage therapy, the children and mothers exhibited higher oxytocin concentrations compared to those during the non-massage period. The changes in oxytocin levels before and after a single massage session were not significantly changed in children and mothers. The results suggested that the ASD children (massage receivers) and their mothers (massage givers) show touch therapy-dependent changes in salivary oxytocin concentrations.
Rat neuromedin U (r-NMU) and its fragment peptide amides were synthesized by solid-phase methodology. Using a chicken crop smooth muscle contraction assay, the potency of r-NMU and its fragments relative to porcine neuromedin U-8 (p-NMU-8) was r-NMU: 10.25 +/- 2.88, r-NMU (6-23): 8.01 +/- 1.04, r-NMU (10-23): 2.76 +/- 0.46, r-NMU (13-23): 2.81 +/- 0.52, and r-NMU (16-23): 0.88 +/- 0.19, respectively. Two heptapeptides, r-NMU (17-23) and r-NMU (16-22), had a relative potency of 0.61 and 0.03 respectively, and elicited maximal contraction at a dose of 10 microM to a similar degree to p-NMU-8. The other shorter C-terminal fragments did not elicit the maximal contraction or any activity. In a rat uterus contraction assay, r-NMU (13-23), but not r-NMU (16-23), at a dose of 4 nM retained as high a stimulatory activity as r-NMU itself. r-NMU (17-22) was the smallest peptide fragment to elicit the maximal sustained contraction at 10 microM. These results indicate that the amino acid sequence Phe-Leu-Phe-Arg-Pro-Arg, corresponding to positions 17 to 22 of r-NMU, may be essential for contractile activity. N-terminal peptide segments Tyr-Gln-Gly-Pro corresponding to positions 6 to 9, and Ser-Gly-Gly corresponding to positions 13 to 15, appear to be of special importance for potent activity.
The glucuronyltransferase involved in the biosynthesis of the HNK-1 epitope on glycoproteins was purified to an apparent homogeneity from the Nonidet P-40 extract of 2-week postnatal rat forebrain by sequential chromatographies on CM-Sepharose CL-6B, UDP-GlcASepharose 4B, asialo-orosomucoid-Sepharose 4B, Matrex gel Blue A, Mono Q, HiTrap chelating, and HiTrap heparin columns. The purified enzyme migrated as a 45-kDa protein upon SDS-polyacrylamide gel electrophoresis under reducing conditions, but eluted as a 90-kDa protein upon Superose gel filtration in the presence of Nonidet P-40, suggesting that the enzyme forms homodimers under non-denatured conditions. The enzyme transferred glucuronic acid to various glycoprotein acceptors bearing terminal N-acetyllactosamine structure such as asialo-orosomucoid, asialo-fetuin, and asialoneural cell adhesion molecule, whereas little activity was detected to paragloboside, a precursor glycolipid of the HNK-1 epitope on glycolipids. These results suggested that the enzyme is specifically associated with the biosynthesis of the HNK-1 epitope on glycoproteins. Sphingomyelin was specifically required for expression of the enzyme activity. Stearoyl-sphingomyelin (18:0) was the most effective, followed by palmitoyl-sphingomyelin (16:0) and lignoceroyl-sphingomyelin (24:0). Interestingly, activity was demonstrated only for sphingomyelin with a saturated fatty acid, i.e. not for that with an unsaturated fatty acid, regardless of the length of the acyl group .
Contractile activity of porcine neuromedin U-25 (p-NMU-25) and various neuromedin U (NMU) peptide fragment amides was examined on chicken crop smooth muscle preparation. The relative activity (expressed as RA value) of p-NMU-25 to porcine neuromedin U-8 (p-NMU-8) was 5.51 +/- 0.09, and p-NMU-25 (15-25) was the most potent fragment with an RA value of 7.78 +/- 0.05. All C-terminal 11-peptide amides of rat, rabbit, and frog NMU peptides retained activity about three-fold higher than the corresponding C-terminal 8-peptide amides. The peptide segment Asn15-Arg-Arg17 of p-NMU-25, as well as the corresponding positions of various NMU peptides: Ser13-Gly-Gly15 of rat NMU and Ser15-Arg-Gly17 of rabbit and frog NMUs, appeared to be involved in the structural requirements for increased contractile activity in the assay system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.