Magnesium bis(hydridotriphenylborate), isolated as a solvent-separated ion pair [Mg(thf)][HBPh], effectively catalyzed the hydroboration of several unsaturated substrates including CO.
We found that in situ generated cerium(IV) carboxylate generated by mixing the precursor Ce(O t Bu) 4 with the corresponding carboxylic acids served as efficient photocatalysts for the direct formation of carboxyl radicals from carboxylic acids under blue light-emitting diodes (blue LEDs) irradiation and air, resulting in catalytic decarboxylative oxygenation of aliphatic carboxylic acids to give C−O bond-forming products such as aldehydes and ketones. Control experiments revealed that hexanuclear Ce(IV) carboxylate clusters initially formed in the reaction mixture and the ligand-to-metal charge transfer nature of the Ce(IV) carboxylate clusters was responsible for the high catalytic performance to transform the carboxylate ligands to the carboxyl radical. In addition, the Ce(IV) carboxylate cluster catalyzed direct lactonization of 2-isopropylbenzoic acid to produce the corresponding peroxy lactone and γ-lactone via intramolecular 1,5-hydrogen atom transfer (1,5-HAT).
d metal-alkyl complexes (M = Ti, Zr, and Hf) show specific activity and selectivity in olefin polymerization and oligomerization depending on their ligand set and charge. Here, we show by a combined experimental and computational study that the C NMR chemical shift tensors of the α-carbon of metal alkyls that undergo olefin insertion signal the presence of partial alkylidene character in the metal-carbon bond, which facilitates this reaction. The alkylidene character is traced back to the π-donating interaction of a filled orbital on the alkyl group with an empty low-lying metal d-orbital of appropriate symmetry. This molecular orbital picture establishes a connection between olefin insertion into a metal-alkyl bond and olefin metathesis and a close link between the Cossee-Arlmann and Green-Rooney polymerization mechanisms. TheC NMR chemical shifts, the α-H agostic interaction, and the low activation barrier of ethylene insertion are, therefore, the results of the same orbital interactions, thus establishing chemical shift tensors as a descriptor for olefin insertion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.