Chronic kidney disease has become a major public health problem worldwide. The aim of this study was to investigate the differences in plant growth and photosynthesis among three lettuce (Lactuca sativa) types with different morphological characteristics under low potassium conditions, providing information for improving the method of low-potassium lettuce culture. Lettuce was hydroponically grown in half-strength Enshi formula nutrient solution containing 4, 2, or 1 me·L In green leaf lettuce, reductions in both the net assimilate rate (NAR) and leaf area ratio (LAR) led to a decline in RGR. In Boston lettuce and romaine lettuce, the reduction of RGR was mainly due to a reduction in LAR, and to a lesser extent caused by NAR. Reduced potassium in the nutrient solution had a greater effect on mature leaves than on newly expanded leaves for all three lettuce types. In green leaf lettuce and Boston lettuce, photosynthetic rates of mature leaves significantly decreased under reduced potassium treatments, with a steady or gradually increased intercellular CO 2 concentration; this indicated that non-stomatal factors suppressed photosynthesis. In romaine lettuce, the photosynthetic rate was less influenced by reduced potassium levels in the nutrient solution, and the significant increase observed in leaf mass per area might contribute to maintaining photosynthesis in the leaf. The decrease in photosynthesis in mature leaves exhibited a similar trend to the decreased potassium content in the leaves within the three lettuce types, but the factor related to the reduction of photosynthesis was different.
To produce tomato fruits with 6% average Brix without decreasing yield, we investigated the effect of moderate salinity stress on Brix and yield in a single-truss, high-density tomato production system. Because tomato fruit development can be predicted from cumulative temperature, we also assessed cumulative temperature after anthesis as a potential indicator for determining the starting points of salinity stress treatments. When transverse diameters of the first fruit reached 4 cm (i.e., early increase treatment) or the first fruits were at the mature green stage (i.e., late increase treatment), nutrient solution electrical conductivity was slowly increased until the breaker stage from 1.8 dS·m -1 to 6.0 dS·m -1. Plants subjected to the late increase treatment produced tomato fruits with Brix values of 6% without reductions in marketable yield. We also increased nutrient solution electrical conductivity based on cumulative temperature after anthesis and found that early-treated plants produced tomatoes with higher Brix levels and yields than late-treated plants. In summary, moderate salinity stress to avoid excessive stress on plants increased sugar concentrations without decreasing fruit yield and resulted in tomato fruits with average Brix of about 6% when nutrient solution electrical conductivity was increased at a rate of 0.1 dS·m. Because seasonal differences in cumulative temperature influence the appropriate timing of salinity stress applications, further study is needed to optimize year-round growth under moderate salinity stress in single truss, high-density tomato production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.