Given a holomorphic C 2 -cofinite vertex operator algebra V with graded dimension j − 744, Borcherds's proof of the monstrous moonshine conjecture implies any finite order automorphism of V has graded trace given by a "completely replicable function", and by work of Cummins and Gannon, these functions are principal moduli of genus zero modular groups. The action of the monster simple group on the monster vertex operator algebra produces 171 such functions, known as the monstrous moonshine functions. We show that 154 of the 157 non-monstrous completely replicable functions cannot possibly occur as trace functions on V .
We introduce a generalization of Brauer character to allow arbitrary finite length modules over discrete valuation rings. We show that the generalized super Brauer character of Tate cohomology is a linear combination of trace functions. Using this result, we find a counterexample to a conjecture of Borcherds about vanishing of Tate cohomology for Fricke elements of the Monster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.