Recently, roles of Delta-like 4 (Dll4)-Notch signaling in angiogenesis have been demonstrated by a series of reports (Ridgway et al., 2006;Hellstrom et al., 2007;Siekmann and Lawson, 2007;Suchting et al., 2007). Murine retina heterozygous for a null mutation of the Dll4 gene showed excessive branching and this was recapitulated by administering a -secretase inhibitor, Development 138, 4763-4776 (2011Development 138, 4763-4776 ( ) doi:10.1242 SUMMARYAngiogenesis is a complex process, which is accomplished by reiteration of modules such as sprouting, elongation and bifurcation, that configures branching vascular networks. However, details of the individual and collective behaviors of vascular endothelial cells (ECs) during angiogenic morphogenesis remain largely unknown. Herein, we established a time-lapse imaging and computer-assisted analysis system that quantitatively characterizes behaviors in sprouting angiogenesis. Surprisingly, ECs moved backwards and forwards, overtaking each other even at the tip, showing an unknown mode of collective cell movement with dynamic 'cell-mixing'. Mosaic analysis, which enabled us to monitor the behavior of individual cells in a multicellular structure, confirmed the 'cell-mixing' phenomenon of ECs that occurs at the whole-cell level. Furthermore, an in vivo EC-tracking analysis revealed evidence of cell-mixing and overtaking at the tip in developing murine retinal vessels. In parametrical analysis, VEGF enhanced tip cell behavior and directed EC migration at the stalk during branch elongation. These movements were counter-regulated by EC-EC interplay via -secretase-dependent Dll4-Notch signaling, and might be promoted by EC-mural cell interplay. Finally, multiple regression analysis showed that these molecule-mediated tip cell behaviors and directed EC migration contributed to effective branch elongation. Taken together, our findings provide new insights into the individual and collective EC movements driving angiogenic morphogenesis. The methodology used for this analysis might serve to bridge the gap in our understanding between individual cell behavior and branching morphogenesis.
We report a facile method for the formation of charge-free reverse wormlike micelles in a nonionic surfactant/oil system without addition of water under ambient conditions. This route involves the addition of sucrose dioleate (SDO) to semidilute solutions of sucrose trioleate (STO) in hexadecane. A reverse wormlike micelle was possible to achieve only with ionic surfactants in which water and/or salts are fundamentally required to induce micellar growth so far. In this contribution, we have shown that less lipophilic nonionic surfactant SDO promotes one-dimensional growth to STO reverse micelles and leads to the formation of transient networks of viscoelastic reverse wormlike micelles. The zero-shear viscosity increases by ∼4 orders of magnitude, and it is the mixing fraction of SDO to STO that determines the viscosity growth. The structure and dynamics of the reverse micelles are confirmed by small-angle X-ray scattering (SAXS) and rheometry measurements.
We performed scanning microbeam small-angle X-ray diffraction (micro-SAXD) experiments, differential scanning calorimetry (DSC) analysis, and optical microscopic observation of palm mid fraction (PMF) crystals in oil-in-water emulsion droplets. The scanning micro-SAXD experiment was performed by irradiating a synchrotron radiation X-ray microbeam having an area of 5 x 5 microm(2) onto different positions on a 50 microm diameter emulsion droplet after the crystallization of PMF by chilling the emulsion at 5 degrees C. The micro-SAXD patterns were recorded with a two-dimensional (2D) detector, which enabled spatial analysis of polymorphic structures and the orientation of lamella planes of PMF crystals at different positions inside the emulsion droplet. Particular attention was paid to compare the crystallization of PMF in two types of emulsion droplets, hydrophilic polyoxyethylene sorbitan mono-oleate (Tween 80) alone (Tween 80 emulsion) and Tween 80 and hydrophobic sucrose palmitic acid oligoester (P-170) (Tween 80+P-170 emulsion). The DSC study revealed that the PMF crystallization temperature in the Tween 80+P-170 emulsion droplets increased by 3 degrees C compared to that of the Tween 80 emulsion because of the effects of the P-170 additive in promoting PMF crystallization. The micro-SAXD studies revealed the following results. (1) The lamella planes of PMF crystals near the outer edges of the droplet in the Tween 80+P-170 emulsion were mostly parallel to an oil-water interface, whereas the lamella planes of PMF crystals were not always aligned with the oil-water interface in the Tween 80 emulsion droplet. (2) The degree of orientation of the lamellar planes of PMF crystals, which was evaluated from the values of full width at half-maximum of 2D micro-SAXD patterns with respect to azimuthal angle extension, was remarkably higher in the Tween 80+P-170 emulsion than in the Tween 80 emulsion. (3) Polymorphic transformation of PMF from alpha to beta' in the Tween 80+P-170 emulsion was retarded compared to that in the Tween 80 emulsion. These results confirmed that the P-170 additive caused interfacial heterogeneous nucleation through hydrophobic interactions at the oil-water interfaces in the emulsion, which subsequently influenced the arrangements of fat crystals so that the lamellar planes of fat crystals were parallel to the oil-water interface.
Angiogenesis is a multicellular phenomenon driven by morphogenetic cell movements. We recently reported morphogenetic vascular endothelial cell (EC) behaviors to be dynamic and complex. However, the principal mechanisms orchestrating individual EC movements in angiogenic morphogenesis remain largely unknown. Here we present an experiment-driven mathematical model that enables us to systematically dissect cellular mechanisms in branch elongation. We found that cell-autonomous and coordinated actions governed these multicellular behaviors, and a cell-autonomous process sufficiently illustrated essential features of the morphogenetic EC dynamics at both the single-cell and cell-population levels. Through refining our model and experimental verification, we further identified a coordinated mode of tip EC behaviors regulated via a spatial relationship between tip and follower ECs, which facilitates the forward motility of tip ECs. These findings provide insights that enhance our mechanistic understanding of not only angiogenic morphogenesis, but also other types of multicellular phenomenon.
The polarity of GaN films grown on nitrided (0001) sapphire substrates by low-pressure metalorganic vapor phase epitaxy was controlled by trymethyl–aluminum (TMAl) preflow prior to the growth of GaN buffer layer. The TMAl preflow served as forming a few monolayers of Al to modify the nitrided sapphire surface. The effects of the TMAl preflow on GaN epilayer polarities were investigated by coaxial impact collision ion scattering spectroscopy. It was shown that, by increasing the TMAl preflow time, the polarities of GaN epilayers were changed from a N polarity to a mixed polarity, and finally to a pure Ga polarity when the preflow time was over than 5 s. A schematic model of “two monolayers of Al” was proposed to understand the related mechanisms. The effects of the TMAl preflow on the epilayer quality were also evaluated by high-resolution x-ray diffraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.