Rationale: Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation caused by emphysema and/or airway narrowing. Computed tomography has been widely used to assess emphysema severity, but less attention has been paid to the assessment of airway disease using computed tomography.
Conclusions:We are the first to use three-dimensional computed tomography to demonstrate that airflow limitation in COPD is more closely related to the dimensions of the distal (small) airways than proximal (large) airways.
The human dopamine transporter (DAT1) gene contains a variable number of tandem repeats (VNTR) in its 3'-untranslated region (UTR). The linkage and association between the VNTR polymorphism of DAT1 and various neuropsychiatric disorders have been reported. We have determined the genomic structure of DAT1 genes containing 7-, 9-, 10-, and 11-repeat alleles and examined the effect of VNTR polymorphism in the 3'-UTR region of DAT1 on gene expression using the luciferase reporter system in COS-7 cells. Luciferase expression was significantly higher when the 3'-UTR of the DAT1 gene contained the 10-repeat allele than when it contained the 7- or 9-repeat alleles. This suggests that VNTR polymorphism affects the expression of the dopamine transporter.
Emphysema severity is independently associated with a rapid annual decline in FEV1 in COPD. Sustainers and Rapid decliners warrant specific attention in clinical practice.
We have cloned two novel Caenorhabditis elegans dopamine receptors, DOP-3 and DOP-4. DOP-3 shows high sequence homology with other D2-like dopamine receptors. As a result of alternative splicing, a truncated splice variant of DOP-3, DOP-3nf, was produced. Because of the in-frame insertion of a stop codon in the third intracellular loop, DOP-3nf lacks the sixth and seventh transmembrane domains that are found in the full-length DOP-3 receptor. Reporter gene assay showed that DOP-3 attenuates forskolin-stimulated cAMP formation in response to dopamine stimulation, whereas DOP-3nf does not. When DOP-3 was coexpressed with DOP-3nf, the ability to inhibit forskolin-stimulated cAMP formation was reduced. DOP-4 shows high sequence homology with D1-like dopamine receptors unique to invertebrates, which are distinct from mammalian D1-like dopamine receptors. Reporter gene assay showed that DOP-4 stimulates cAMP accumulation in response to dopamine stimulation. These two receptors provide new opportunities to understand dopaminergic signaling at the molecular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.