In mice, transcription initiates at the mid-one-cell stage and transcriptional activity dramatically increases during the two-cell stage, a process called zygotic gene activation (ZGA). Associated with ZGA is a marked change in the pattern of gene expression that occurs after the second round of DNA replication. To distinguish ZGA before and after the second-round DNA replication, the former and latter are called minor and major ZGA, respectively. Although major ZGA are required for development beyond the two-cell stage, the function of minor ZGA is not well understood. Transiently inhibiting minor ZGA with 5, 6-dichloro-1-β-d-ribofuranosyl-benzimidazole (DRB) resulted in the majority of embryos arresting at the two-cell stage and retention of the H3K4me3 mark that normally decreases. After release from DRB, at which time major ZGA normally occurred, transcription initiated with characteristics of minor ZGA but not major ZGA, although degradation of maternal mRNA normally occurred. Thus, ZGA occurs sequentially starting with minor ZGA that is critical for the maternal-to-zygotic transition.
The chromatin structure in one-cell-stage mouse embryos is extremely loose and becomes tighter at the two-cell stage. As linker histones are involved in higher-order chromatin structure, we examined the involvement of the linker histone variant H1foo in the change of chromatin looseness between the one- and two-cell stages. H1foo knockdown causes the chromatin structure to be tighter in the pronucleus and increases deposition of the histone H3 variant H3.1/3.2 in the peripheral region of the pronucleus in one-cell-stage embryos. The decrease in chromatin looseness at the two-cell stage is less after overexpressing H1foo. These results suggest that H1foo is involved in the change in chromatin structure via nuclear deposition of H3 variants between the one- and two-cell stages.
After fertilization, the zygotic genome is activated through two phases, minor zygotic activation (ZGA) and major ZGA.
Recently, it was suggested that DUX is expressed during minor ZGA and activates some genes during major ZGA. However, it has not been proven that Dux is expressed during minor ZGA and functions to activate major ZGA genes, because there are several Dux paralogs that may be expressed in zygotes instead of Dux. In this study, we found that more than a dozen Dux paralogs, as well as Dux, are expressed during minor ZGA. Overexpression of some of these genes induced increased expression of major ZGA genes. These results suggest that multiple Dux paralogs are expressed to ensure a sufficient amount of functional Dux and its paralogs which are generated during a short period of minor ZGA with a low transcriptional activity. The mechanism by which multiple Dux paralogs are expressed is discussed.
After fertilization, the genomes derived from an oocyte and spermatozoon are in a transcriptionally silent state before becoming activated at a species-specific time. In mice, the initiation of transcription occurs at the
mid-one-cell stage, which represents the start of the gene expression program. A recent RNA sequencing analysis revealed that the gene expression pattern of one-cell embryos is unique and changes dramatically at the two-cell
stage. However, the mechanism regulating this alteration has not yet been elucidated. It has been shown that chromatin structure and epigenetic factors change dynamically between the one- and two-cell stages. In this article, we
review the characteristics of transcription, chromatin structure, and epigenetic factors in one- and two-cell mouse embryos and discuss the involvement of chromatin structure and epigenetic factors in the alteration of
transcription that occurs between these stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.