Certain low-molecular-weight substrate analogs act both as in vitro competitive inhibitors of lysosomal hydrolases and as intracellular enhancers (chemical chaperones) by stabilization of mutant proteins. In this study, we performed oral administration of a chaperone compound N-octyl-4-epi-beta-valienamine to G(M1)-gangliosidosis model mice expressing R201C mutant human beta-galactosidase. A newly developed neurological scoring system was used for clinical assessment. N-Octyl-4-epi-beta-valienamine was delivered rapidly to the brain, increased beta-galactosidase activity, decreased ganglioside G(M1), and prevented neurological deterioration within a few months. No adverse effect was observed during this experiment. N-Octyl-4-epi-beta-valienamine will be useful for chemical chaperone therapy of human G(M1)-gangliosidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.